• 제목/요약/키워드: average basin slope

검색결과 45건 처리시간 0.028초

GIS를 이용한 SCS-CN 산정에 관한 연구 (A Study on the Determination of SCS-CN Using GIS)

  • 조홍제;오준호;남병호;정경택
    • 대한공간정보학회지
    • /
    • 제12권1호
    • /
    • pp.39-44
    • /
    • 2004
  • GIS 활용을 위한 수치지도의 보급이 확대되고 위성영상분석 등 정밀한 자료의 구축이 가능해짐에 따라 하천유역의 수문해석에 대한 GIS 이용은 필수적이 되었다. SCS-CN법은 소유역 농경지를 대상으로 개발된 방법으로서 큰 유역이나 산지지역에 대한 적용에 문제점이 많은 것으로 알려져 왔다. 우리나라 자연하천유역의 산지비율이 70% 이상이고 대부분 미계측 유역임을 감안할 때, 합리적인 기준이나 보완 없이 기존의 SCS-CN법을 적용하는 것은 무리가 있다. 본 연구에서는 유역내에서 강우의 손실이나 유출에 큰 영향을 미치는 유역경사를 고려한 SCS-CN 산정방법을 개발하는데 주안점을 두었고, 기존의 면적가중평균 방법과 GIS를 이용한 분포형 SCS-CN 산정방법 그리고 유역경사를 고려한 분포형 SCS-CN 산정방법으로 비교, 검토하였다. 건설기술연구원에서 운영중인 시험유역 설마천에 대한 적용결과, SCS-CN법에 의한 유효강우량 산정시 유역경사가 영향을 미치는 것으로 확인하였다. 따라서 GIS 기반의 유역경사를 고려한 분포형 SCS-CN 산정방법이 산지하천유역의 유효강우량 산정방법으로 제안되었다.

  • PDF

분포형 광역 수문모델 개발 및 한강유역 미래 기후변화 수문영향평가 (Development of a Meso-Scale Distributed Continuous Hydrologic Model and Application for Climate Change Impact Assessment to Han River Basin)

  • 김성준;박근애;이용관;안소라
    • 한국지리정보학회지
    • /
    • 제17권3호
    • /
    • pp.160-174
    • /
    • 2014
  • 본 연구의 목적은 광역의 일단위 수문순환을 모의할 수 있는 격자기반의 분포형 모델을 구축한 후, 이를 미래 기후변화에 따른 광역적 수문영향을 평가하는데 있다. 격자별로 지표 유출층, 지표하 불포화 및 포화 토양층의 3단으로 구성하여 일별 물수지를 계산하며, 증발산량은 Penman-Monteith방법을 사용하였고, 지표 및 지표하유출은 지체계수(lag coefficient)와 감수곡선 계수(recession curve slope)를 적용하였다. 모델의 검보정을 위하여 한강유역의 충주댐과 소양강댐을 대상으로 9개년(2001-2009)의 댐유입량 자료를 이용하여 모델의 6개 주요매개변수를 보정하였으며, Nash-Sutcliffe 모델효율 (NSE)은 각각 0.57, 0.71의 값을 보였으며, 결정계수($R^2$)는 각각 0.65, 0.72의 값을 보였다. 5개의 IPCC SRES A1B 기후변화 시나리오자료(CSIRO MK3, GFDL CM2_1, CONS ECHO-G, MRI CGCM2_3_2, UKMO HADGEMI)를 적용한 결과, 미래 유출량의 변화는 강수량과 비슷한 경향을 보이면서 전체적으로 7.0%~27.1% 증가하였고, 증발산량도 미래 기온의 증가경향으로 일부 경우를 제외하고 증가하는 경향을 나타내었으며, 이들의 공간적 변화를 제시하였다.

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

GIS를 활용한 돌발홍수 기준우량 결정 (Determining the Flash Flood Warning Trigger Rainfall using GIS)

  • 황창섭;전계원;연인성
    • 한국지리정보학회지
    • /
    • 제9권1호
    • /
    • pp.78-88
    • /
    • 2006
  • 본 연구에서는 GIS기법을 활용한 산악지역의 돌발홍수 기준우량을 산정하기위해 지형기후학적 순간단위유량도(geomorphoclimatic instantaneous unit hydrograph, GCIUH)와 연계하여 유출해석을 수행하였다. 천동계곡 유역의 평균경사, 면적, 유로특성등 지형자료 구축에 GIS기법을 적용하였으며, 특히 GCIUH의 중요 입력변수인 하천차수 결정시 GIS기법을 활용하여 차수를 선정하였다. 산악지역 유출량 산정의 적합성을 위해 천동계곡 유역($14.58km^2$)에 대한 확률강우량으로 GCIUH의 첨두유량과 기본 보고서의 확률홍수량 자료를 비교하여 적합성을 확인하였다. 적합성이 확인된 GCIUH를 이용하여 천동계곡 유역의 돌발홍수 기준우량을 산정한 결과 한계유출량이 $11.42m^3/sec$일때, 최초 20분간 기준우량이 12.57mm가 발생하면 위험한 것으로 분석되었다.

  • PDF

토지이용변화에 따른 낙동강 유역 산림경관의 구조적 패턴 분석 (Patterns of Forest Landscape Structure due to Landcover Change in the Nakdong River Basin)

  • 박경훈;정성관;권진오;오정학
    • 농촌계획
    • /
    • 제11권4호
    • /
    • pp.47-57
    • /
    • 2005
  • The goal of this research is to evaluate landscape-ecological characteristics of watersheds in the Nakdong River Basin by using Geogaphic Information System (GIS) and landscape indices for integation of spatio-temporal informations and multivariate statistical techniques for quantitative analysis of forest landscape. Fragmentation index and change matrix techniques using factor analysis and grid overlay method were used to efficiently analyze and manage huge amount of information for ecological-environmental assessment (land-cover and forest landscape patterns). According to the results based on the pattern analysis of land-cover changes using the change detection matrix between 1980s and 1990s, addition on 750km$^2$ became urbanized areas. The altered 442.04km$^2$ was agricultural areas which is relatively easy for shifting of land-use, and 205.1km$^2$ of forests became urbanized areas, and average elevation and slope of the whole altered areas were 75m and 4$^{\circ}$. On the other hand, 120km$^2$ of urban areas were changed into other areas (i.e., agricultural areas and green space), and fortunately, certain amount of naturalness had been recovered. But still those agricultural areas and fallow areas, which were previously urban areas, had high potential of re-development for urbanization due to their local conditions. According to the structural analysis of forest landscape using the landscape indices, the forest fragmentation of watersheds along the main stream of the Nakdong River was more severe than my other watersheds. Furthermore, the Nakdong-sangju and Nakdong-miryang watersheds had unstable forest structures as well as least amount of forest quantity. Thus, these areas need significant amount of forest through a new forest management policy considering local environmental conditions.

제대천 유역 답지대의 물수지 (Water Balance on Paddy Fields in Jedae Cheon Basin)

  • 안세영;이근후
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.56-66
    • /
    • 1990
  • To investigate the status of irrigation water use and the degree of repeated use of irrigation water, observations for water balance analysis were made during the irrigation periods in 1986 and 1987 crop year. The total area of studied site is 1,441 ha. The site is a major portion of Jedaecheon basin which is located in Bubuk-myeon, Miryang-gun, Gyeongnam Province. The studied area was subdivided into six small blocks. The water balance analysis for these subdivided blocks were carried out considering characteristics of each block. Obtained results are as follow: 1.In mountainous sloppy paddy area(less than 7% slope), the surface inflow was 5A mm/day in average that is one third of the surface inflow into plain paddy area ; 16.7 mm/day. 2.The surface inflows at the vegetative stage and the ripening stage were 15.5 mm/day and 10.4 mm/day, respectively. Those figures were larger than the actual consumptive use at respective same stages ; 13.3 mm/day and 9.2 mm/day, respectively. Whereas, the surface inflow at generative stage was 12.5 mm/day which was less than 14.0 mm/day ; the actual consumptive use. 3.The range of the variation of water storage term was 1 mm/day. This means that there were no change in depth of ponded water on paddy fields. The relationship between the variation of water storage(AS) and the variation of ground water table(H) could be expressed as follow: : AS=0.14H+0.26 4.The ground water inflow: into the transition region ; paddy fields which are located continuously from the mountainous area to the plain area, was larger than the out flow from this region, in general. Rowever, in the plain region where the ground water utilization was predominant, the ground water outflow from this region was larger than inflow: to this region. The relationship between the ground water flow(G2- G1) and the consumptive use in large paddy area(D1-D2) could be expressed as follow: (G2-G1) =0.95(D1-D2) -3.79

  • PDF

미계측 유역 평균갈수량 산정을 위한 지역회귀모형의 개발 (Development of Regional Regression Model for Estimating Mean Low Flow in Ungauged Basins)

  • 이태희;이민호;이재응
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.407-416
    • /
    • 2016
  • 본 연구에서는 미계측 유역의 평균갈수량 추정을 위한 지역회귀모형을 개발하고자 하였다. 12개 다목적댐과 4개의 용수댐에서 관측된 조절되지 않은 유입량 자료로부터 평균갈수량을 산정하였고, 이를 유역면적, 유역경사, 유역밀도, 연평균강수량, 유출곡선지수 등의 유역특성인자와의 상관분석을 통해 다양한 형태의 지역회귀모형을 개발하였다. 평균갈수량의 관측값과 추정값의 비교를 통해 각 회귀모형의 성능을 평가하였고, 유역면적, 연평균강수량, 유출곡선지수를 설명변량으로 하는 회귀모형이 가장 우수한 성능을 보였다. 또한 비유량법과 기존에 개발된 기존회귀모형과의 비교를 통해서 본 연구에서 개발한 모형의 적용성이 가장 우수한 것으로 분석되었다.

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

DEM의 정확도 분석에 의한 도시 소유역의 유출해석 (Runoff of an Small Urban Area Using DEM Accuracy Analysis)

  • 박진형;이관수;이삼노
    • 한국지리정보학회지
    • /
    • 제7권1호
    • /
    • pp.28-38
    • /
    • 2004
  • 본 연구는 수치지형자료의 해상도와 보간법의 변화에 따른 정확도 분석을 실시하여 도시소유역의 유출현상을 해석하고자 하였다. 수치자료는 격자크기별로 TIN 보간법을 이용하여 DEM 자료를 생성하고, 정확도 분석은 수치지도의 등고선을 이용하여 결정계수($R^2$)와 회귀식을 도출하였다. 검증된 DEM 자료를 사용하여 소유역구분, 면적, 유역폭, 지면경사도 등의 지형인자를 추출하여 도시유출모형에 적용시켜 여서-문수지구의 도시 소유역에 가장 적합한 유출모형을 알아보고자 한다. 모형의 적용 결과 SWMM의 유출수문곡선이 ILLUDAS의 유출수문곡선보다 실측값에 더 근사하게 나타났고, SWMM의 경우 실측값과 최대 19%, 최소 5%, 평균 13%의 오차를 나타냈다. 본 연구대상지역과 같은 도시소유역은 강우지속시간이 첨두도달시간에 미치는 영향은 미미하게 나타났다. 본 연구의 결과로 SWMM 모형이 여서-문수지역의 도시유출모형으로 적합하며 적용면에서도 더 다양한 기능과 정확성을 나타낸다고 판단된다.

  • PDF

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF