• Title/Summary/Keyword: auxiliary transformer

Search Result 116, Processing Time 0.025 seconds

A Novel Flyback Converter for Low Standby Power Consumption (대기전력저감을 위한 플라이백컨버터)

  • Chung, Bong-Gun;Jang, Sang-Ho;Kim, Eun-Soo;Choi, Mun-Gi;Kye, Moon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Recently, although the power consumption of the flyback converter at the light load and standby power load was minimized by the burst mode operation of PWM IC, flyback converter has still the low efficiency characteristics by the high magnetizing current flowing through magnetizing inductance of transformer. This paper proposes a novel flyback converter with an improved efficiency characteristics and the reduced magnetizing current at the light load and standby power load. Prototype of the 70W multi-output flyback converter for an auxiliary power module of 50 inch PDP TV is built and the experimental results are described.

Development of 8kW/L, 700kHz GaN based Auxiliary Power Module using planar matrix transformer for xEV (8kW/L, 700kHz 평면변압기를 이용한 GaN 소자 기반 친환경자동차용 LDC 개발 및 손실 분석을 통한 구조 설계)

  • Kim, Kyu-young;Kim, Sang-jin;Adhistira, Adhistira;Choi, Se-wan;Yang, Dae-ki;Hong, Seok-yong;Lee, Youn-sik;Yeo, In-yong
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.168-169
    • /
    • 2019
  • 본 논문은 친환경자동차용 저전압 DC-DC 컨버터(Low-voltage DC-DC converter, LDC)의 고전력밀도 달성을 위한 스위칭 주파수 선정 및 구조 설계 방법을 소개한다. 위상천이 풀-브릿지(Phase-Shift Full-Bridge, PSFB) 컨버터의 손실 분석을 통해 스위칭 주파수 700kHz 선정하였으며, 냉각수 온도 65℃, 분당 8리터의 유량 기준으로 소자 온도가 110℃ 이내로 관리 되도록 고려하여 구조 설계를 수행했다. 온도 조건을 만족하면서 8kW/L의 높은 전력밀도를 달성하였으며 입력전압 200V-310V, 출력전압 12.8V-15.1V의 전압 범위를 만족하는 1.8kW 최종 시작품을 제작하여 실험으로 검증하였다.

  • PDF

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Study on the ZVZCS Three Level DC/DC Converter without Primary Freewheeling Diodes (1차측 환류 다이오드를 제거한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kwon, Soon-Do;Kim, Pil-Soo;Gye, Sang-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.66-73
    • /
    • 2002
  • This paper presents ZVZCS(Zero-Voltage and Zero-Current Switching) Three Level DC/DC Converter without primary freewheeling diodes. The new converter presented in this paper used a phase shirt control with a flying capacitor in the primary side to achieve ZVS for the outer switches. A secondary anxiliary circuit which consists of one small capacitor, two small diodes and one coupled inductor, is added in the secondary to provide ZVZCS conditions to primary switches, ZVS for outer switches and ZCS for inner switches. Many advantages include simple secondary auxiliary circuit topology, high efficiency, and low cost make the new converter attractive for high power applications. Also the circulating current flows through the circuit so that it causes the needless coduction loss to be occurred in the devices and the transformer of the circuit The new converter has no primary auxiliary diodes for freewheeling current. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 1[㎾] 50[KHz]IGBT based experimental circuit.

Dual-Coupled Inductor High Gain DC/DC Converter with Ripple Absorption Circuit

  • Yang, Jie;Yu, Dongsheng;Alkahtani, Mohammed;Yuan, Ligen;Zhou, Zhi;Zhu, Hong;Chiemeka, Maxwell
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1366-1379
    • /
    • 2019
  • High-gain DC/DC converters have become one of the key technologies for the grid-connected operation of new energy power generation, and its research provides a significant impetus for the rapid development of new energy power generation. Inspired by the transformer effect and the ripple-suppressed ability of a coupled inductor, a double-coupled inductor high gain DC/DC converter with a ripple absorption circuit is proposed in this paper. By integrating the diode-capacitor voltage multiplying unit into the quadratic Boost converter and assembling the independent inductor into the magnetic core of structure coupled inductors, the adjustable range of the voltage gain can be effectively extended and the limit on duty ratio can be avoided. In addition, the volume of the magnetic element can be reduced. Very small ripples of input current can be obtained by the ripple absorption circuit, which is composed of an auxiliary inductor and a capacitor. The leakage inductance loss can be recovered to the load in a switching period, and the switching-off voltage spikes caused by leakage inductance can be suppressed by absorption in the diode-capacitor voltage multiplying unit. On the basis of the theoretical analysis, the feasibility of the proposed converter is verified by test results obtained by simulations and an experimental prototype.