• Title/Summary/Keyword: autoregressive moving average

Search Result 189, Processing Time 0.025 seconds

ARMA-based data prediction method and its application to teleoperation systems (ARMA기반의 데이터 예측기법 및 원격조작시스템에서의 응용)

  • Kim, Heon-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • This paper presents a data prediction method and its application to haptic-based teleoperation systems. In general, time delays inevitably occur during data transmission in a network environment, which degrades the overall performance of haptic-based teleoperation systems. To address this situation, this paper proposes an autoregressive moving average (ARMA) model-based data prediction algorithm for estimating model parameters and predicting future data recursively in real time. The proposed method was applied to haptic data captured every 5 ms while bilateral haptic interaction was carried out by two users with an object in a virtual space. The results showed that the prediction performance of the proposed method had an error of less than 1 ms when predicting position-level data 100 ms ahead.

Development of System Marginal Price Forecasting Method Using ARIMA Model (ARIMA 모형을 이용한 계통한계가격 예측방법론 개발)

  • Kim Dae-Yong;Lee Chan-Joo;Jeong Yun-Won;Park Jong-Bae;Shin Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.85-93
    • /
    • 2006
  • Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. In an electricity market the short-term market price affects considerably the short-term trading between the market entities. Therefore, the exact forecasting of SMP can influence on the profit of market participants. This paper presents a new methodology for a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) model based on the time-series method. And also the correction algorithm is proposed to minimize the forecasting error in order to improve the efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the case studies are performed using historical data of SMP in 2004 published by KPX(Korea Power Exchange).

A Correction Technique of Missing Load Data Based on ARIMA Model (ARIMA 모형에 기초한 수요실적자료 보정기법 개발)

  • 박종배;이찬주;이재용;신중린;이창호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.405-413
    • /
    • 2004
  • Traditionally, electrical power systems had the vertically-integrated industry structures based on the economics of scale. However power systems have been recently reformed to increase the energy efficiency of the power system. According to these trends, Korean power industry has been partially restructured, and the competitive generation market was opened in 2001. In competitive electric markets, correct demand data are one of the most important issue to maintain the flexible electric markets as well as the reliable power systems. However, the measuring load data can have the uncertainty because of mechanical trouble, communication jamming, and other things. To obtain the reliable load data, an efficient evaluation technique to adust the missing load data is needed. This paper analyzes the load pattern of historical real data and then the turned ARIMA (Autoregressive Integrated Moving Average) model, PCHIP(Piecewise Cubic Interporation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and tested with historical measured data from the Korea Energy Management Corporation (KEMCO).

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

A Study on Forecast of Oyster Production using Time Series Models (시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구)

  • Nam, Jong-Oh;Noh, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.

Mass Estimation of a Permanent Magnet Linear Synchronous Motor Applied at the Vertical Axis (수직축 선형 영구자석 동기전동기의 질량 추정)

  • Lee, Jin-Woo;Ji, Jun-Keun;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.487-491
    • /
    • 2008
  • Tuning of the speed controller in the linear servo applications needs the accurate information of a mover mass including a load mass. Therefore this paper proposes the mass estimation method of a permanent magnet linear synchronous motor(PMLSM) applied at the vertical axis by using the recursive Least-Squares estimation algorithm. First, this paper derives the deterministic autoregressive moving average(DARMA) model of the mechanical dynamic system used at the vertical axis. The application of the Least-Squares algorithm to the derived DARMA model gives the mass estimation method. Matlab/Simulink-based simulation and experimental results show that the total mover mass of a PMLSM applied at the vertical axis can be accurately estimated at both no-load and load conditions.

Residual-based Robust CUSUM Control Charts for Autocorrelated Processes (자기상관 공정 적용을 위한 잔차 기반 강건 누적합 관리도)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2012
  • The design method for cumulative sum (CUSUM) control charts, which can be robust to autoregressive moving average (ARMA) modeling errors, has not been frequently proposed so far. This is because the CUSUM statistic involves a maximum function, which is intractable in mathematical derivations, and thus any modification on the statistic can not be favorably made. We propose residual-based robust CUSUM control charts for monitoring autocorrelated processes. In order to incorporate the effects of ARMA modeling errors into the design method, we modify parameters (reference value and decision interval) of CUSUM control charts using the approximate expected variance of residuals generated in model uncertainty, rather than directly modify the form of the CUSUM statistic. The expected variance of residuals is derived using a second-order Taylor approximation and the general form is represented using the order of ARMA models with the sample size for ARMA modeling. Based on the Monte carlo simulation, we demonstrate that the proposed method can be effectively used for statistical process control (SPC) charts, which are robust to ARMA modeling errors.

Monthly rainfall forecast of Bangladesh using autoregressive integrated moving average method

  • Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model (계절 ARIMA 모형을 이용한 104주 주간 최대 전력수요예측)

  • Kim, Si-Yeon;Jung, Hyun-Woo;Park, Jeong-Do;Baek, Seung-Mook;Kim, Woo-Seon;Chon, Kyung-Hee;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Accurate midterm load forecasting is essential to preventive maintenance programs and reliable demand supply programs. This paper describes a midterm load forecasting method using autoregressive integrated moving average (ARIMA) model which has been widely used in time series forecasting due to its accuracy and predictability. The various ARIMA models are examined in order to find the optimal model having minimum error of the midterm load forecasting. The proposed method is applied to forecast 104-week load pattern using the historical data in Korea. The effectiveness of the proposed method is evaluated by forecasting 104-week load from 2011 to 2012 by using historical data from 2002 to 2010.