• Title/Summary/Keyword: automobile industry

Search Result 905, Processing Time 0.025 seconds

A Study on the Motion Object Detection Method for Autonomous Driving (자율주행을 위한 동적 객체 인식 방법에 관한 연구)

  • Park, Seung-Jun;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.547-553
    • /
    • 2021
  • Dynamic object recognition is an important task for autonomous vehicles. Since dynamic objects exhibit a higher collision risk than static objects, our own trajectories should be planned to match the future state of moving elements in the scene. Time information such as optical flow can be used to recognize movement. Existing optical flow calculations are based only on camera sensors and are prone to misunderstanding in low light conditions. In this regard, to improve recognition performance in low-light environments, we applied a normalization filter and a correction function for Gamma Value to the input images. The low light quality improvement algorithm can be applied to confirm the more accurate detection of Object's Bounding Box for the vehicle. It was confirmed that there is an important in object recognition through image prepocessing and deep learning using YOLO.

A Study on the Prediction of Pressure Drop for Ship Strainer (선박용 스트레이너의 압력강하 예측에 관한 연구)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.573-579
    • /
    • 2021
  • In this study, flow analysis was performed on three types of strainers for ships with different flow rates to predict the pressure drop of the strainer due to the filter of strainer. In the case of flow analysis, the flow analysis was performed by applying the porous media method by applying the resistance value derived by Ergun's equation to the filter position. As a result of the analysis, it was found that when the dimensions of the strainer body were small, the influence of the flow rate on the pressure drop was large. In addition, the amount of pressure drop and the flow rate are almost linearly proportional, and an analysis formula that can predict the amount of pressure drop was derived. In order to predict the amount of pressure drop of the strainer when blockage exist in the strainer filter, the analysis was performed by introducing the resistance ratio to derive the prediction equation. Using this equation, it is thought that it will be possible to predict the performance of the strainer due to blockage in the future strainer design and field application.

Optimal Design Study for Development of Washable Faucet Assembly Housing Including Filtration Filter (여과필터를 포함한 세척이 가능한 수도꼭지 어셈블리 하우징 개발을 위한 최적설계 연구)

  • Son, In-Soo;Bae, Sang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2021
  • In recent years, contamination of drinking water sources has emerged as a serious social problem, such as a large number of impurities in tap water or groundwater or the supply of suitable water due to rust of pipes. Although the government and public institutions are implementing various measures to protect water sources, they cannot improve water quality in a short period of time because of the enormous cost involved. Therefore, in recent years, preference has been given to a device that converts tap water, which is hard water, into soft water by installing a separate water softener at the faucet from which tap water is discharged. However, the existing filtration device has a problem that filtration performance is gradually lowered when impurities accumulate in the filter, requiring continuous filter replacement. In this study, the optimal design of the filter housing was performed to develop a water softener that can be washed when impurities accumulate on the filter inside the water softener connected to the faucet. For optimal design of the filter housing, fluid and fluid-structural interaction analysis were performed on the design pressure to determine the shape and thickness of the housing, and design review was performed through prototype.

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating (다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

Effect of Ni and Mo Addition on Fatique Property in 12Cr Steel (12Cr강의 피로특성에 미치는 Ni+Mo 첨가의 영향)

  • Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.435-441
    • /
    • 2021
  • This research was performed to study the effect of the Ni + Mo addition on the fatigue properties in 12Cr steel. After heat treatment of 12Cr steel and 12Cr-Ni-Mo steel, tensile tests, impact tests, hardness tests, and rotary bending fatigue tests were performed, respectively. The fatigue fracture surface was observed and analyzed using SEM and EDS. The fatigue limit of 12Cr steel was 554 MPa, which was 49 MPa higher than 505 MPa of 12Cr-Ni-Mo steel. Striations, which are the shape of the typical fatigue fracture surface, were observed at the fracture surface near the starting point of fatigue fracture in the 12Cr steel and 12Cr-Ni-Mo steel. However, unlike the case of 12Cr steel, 12Cr-Ni-Mo steel also had a mixed fracture surface with the fatigue and the ductile fracture surface. When brittle non-metallic inclusions exist near the starting point of fatigue failure, the crack propagation was further promoted and the fatigue life was drastically reduced.

Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine (자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험)

  • Son, In-Soo;Hur, Sang-Bum;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

Optimal Dimension Design and Stability Analysis of Non-slip Steel Grating (금속 그레이팅의 높이변화에 따른 최적치수 설계 및 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • In this study, in order to develop an non-slip metal grating, the stability of the grating according to the span of the grating and the gap and height of the bearing bar was evaluated. The optimal shape design of the grating was performed using the results of determining the stability of the grating. The purpose of this study is to determine the stability according to the spacing and height of the bearing bar by applying the design pressure at the design stage to develop the anti-skid grating, and to design the optimal shape for cost reduction. In the optimal design, the target variable was set as the mass, and the optimal design of the grating was performed based on about 20%. Regardless of the height of the bearing bar of the grating, the stress and deformation of the span and the grating showed a proportional tendency to each other, and it was found that the stress decreased as the height of the bearing bar increased. Based on the structural analysis results, an optimal design was performed using mass as the objective variable, and the existing 2mm thickness was changed to 1.6mm, reducing the mass by about 19%. The stress increased by about 4.4% compared to the maximum stress of the existing grating, but the minimum safety factor was 3.1, indicating that the optimally designed grating was stable.

Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction (벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

Analysis of Vibration Characteristics of Fuel Pipe and Test Jig for Vehicle (차량 연료공급용 파이프 및 시험용 지그의 진동특성 해석)

  • Son, In-Soo;Kim, Myung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.315-321
    • /
    • 2021
  • In this study, the natural frequency analysis of the fuel pipe and vibration test jig was performed as a basic study to determine the vibration characteristics of the vehicle's fuel pipe and the stability analysis of fatigue failure of the pipe. The natural frequencies of the fuel pipe and the fuel pipe with the test jig were calculated and the results were compared. As a result of the analysis, it was found that the natural frequency of the fuel pipe and the natural frequency of the test jig differed about 7 times, so that the vibration of the test jig did not affect the vibration of the fuel pipe. In addition, as a result of the natural frequency analysis of the fuel pipe itself and the pipe with the test jig attached, the maximum error is less than about 1%. In the future, it was suggested that the analysis of the design changed fuel pipe may be performed without a test jig.