• 제목/요약/키워드: automobile fields

검색결과 141건 처리시간 0.025초

다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석 (Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating)

  • 김승욱
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘 (Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm)

  • 나민원;최하나;박윤영
    • 한국IT서비스학회지
    • /
    • 제20권6호
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구 (A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy)

  • 김종민;구준영;전차수
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.

건설기계의 오일진단 관련 특허 분석 (Analysis of Patents Related to Oil Diagnosis of Construction Equipment)

  • 홍성호;장범석
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.143-151
    • /
    • 2022
  • This study analyzes patents related to oil diagnosis of construction equipment. Oil diagnosis is extremely important for maintaining construction equipment properly. Through the evaluation of existing patents, a patent strategy for the future construction equipment market is presented. The related patents are classified and selected in several steps. Finally, 16 valid patents are selected and analyzed in detail. In the classification process, patents are classified by country, year, and company. A market analysis shows that the top 10 companies have a market share of more than 50. In addition to patents related to the oil analysis of construction equipment, patents related to automobile oil analysis and development of oil sensors are investigated to identify the contents of patents in other fields that can be applied to oil diagnosis technology for construction equipment. Moreover, not only the contents of research articles of two Korean construction companies, but also the research trends in the literature in this field are used in the analysis. The related patents of the two Korean companies are few. Companies with a high market share, including Caterpillar, hold many patents, and patents for diagnosis algorithms using such technologies as artificial intelligence and artificial neural networks, along with oil sensor-based condition monitoring technology, are gradually expanding.

소형 트랙터용 전자제어 직접 분사식 디젤 엔진 고강도 실린더 블록의 설계에 관한 연구 (A Study on Design of High strength Cylinder Block about Common Rail Direct Injection Diesel Engine for Small Tractor)

  • 남석주;박성호;김규태;김귀남
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.649-656
    • /
    • 2023
  • Recently, global warming has become severe, and regulation is established for carbon savings each field. its regulation is applied to various fields using IC engine such as automobile, ship, agricultural machine. Therefore engine block applied Common Rail Direct Injection(CRDI) technology, that carry out thermal-structure analysis to examine design. The thermal load about 900℃ by explosion was applied in cylinder. And pressure about 9 MPa(90 Bar) was applied to structure analysis. As a result, it was the highest at 185.99℃ at the top of cylinder. Static-structure analysis applied thermal load, that was shown maximum equivalent stress at 142.59 Mpa and Maximum principal stress 145.03 MPa, Minimum principal stress -149 MPa. When compare analysis results to material property, it design is safety structurally.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

탄소계 경질 박막의 연구 및 산업 적용 동향 (Trend in Research and Application of Hard Carbon-based Thin Films)

  • 이경황;박종원;양지훈;정재인
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측 (Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools)

  • 전수현;권예하;권형안;이용근;임인옥;오현웅
    • 한국항공우주학회지
    • /
    • 제44권2호
    • /
    • pp.172-180
    • /
    • 2016
  • 극초소형 위성으로 분류되는 큐브위성의 경우, 저가/단기간 개발목표 충족을 위해 일반적으로 진동 및 열 환경 규격을 만족하는 상용부품을 선정하여 제작하고 최소한의 검증시험을 통해 발사 및 궤도 운용을 실시한다. 하지만 제한된 회수로 지상에서 실시된 환경시험만으로 장시간에 걸친 궤도상 열진공과 같은 물리적 부하 환경에 노출된 임무보드의 신뢰성을 보장할 수 없다. 본 논문에서는 현재 자동차 분야에서 탑재 전자기기 신뢰도 예측에 폭넓게 활용중인 신뢰성 수명예측 상용도구인 Sherlock을 적용하여 큐브위성용으로 제작된 전자보드를 대상으로 발사 및 궤도환경에서의 고장 메커니즘 별 수명예측 및 임무기간동안의 신뢰도를 분석하였다.

Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump

  • Shigemitsu, Toru;Fukutomi, Junichiro;Kaji, Kensuke
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.317-323
    • /
    • 2011
  • Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices and so on. Further, the needs for mini centrifugal pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini centrifugal pump design be as simple as possible as precise manufacturing is required. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, we started research on the mini centrifugal pump for the purpose of development of high performance mini centrifugal pumps with simple structure. Three types of rotors with different outlet angles are prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the outlet angle on performance and internal flow condition of mini centrifugal pumps. In addition to that, the blade thickness is changed because blockage effect in the mini centrifugal pump becomes relatively larger than that of conventional pumps. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-Fluent) to investigate the internal flow condition. It is clarified from the experimental results that head of the mini centrifugal pump increases according to the increase of the blade outlet angle and the decrease of the blade thickness. In the present paper, the performance of the mini centrifugal pump is shown and the internal flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle and the blade thickness on the performance are investigated and the internal flow of each type of rotor is clarified by the numerical analysis results.

차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구 (Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort)

  • 김윤기;양장식;백제현;김경천;지호성
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.