• 제목/요약/키워드: automation method

검색결과 2,075건 처리시간 0.023초

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

피쉬펌프의 자동화 시스템 개발(I) -간이화 PWM 인버터를 이용한 피쉬펌프의 가변속 제어- (Development of the Automation System for a fish Pump(I) -Adjustable Speed Control of a Fish Pump Using a Simplified PWM Inverter-)

  • 정석권
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.328-334
    • /
    • 1999
  • A fish pump makes very important roles in an automation system of an aquaculture farm, thus it has been used widely in order to transfer fishes from one place to the other place automatically. In spite of its significant roles, the efforts for developing performance and promoting efficiency of the fish pump are not sufficient yet. In this paper, a method which makes the fish pump automation system is suggested. Automation of the fish pump can be accomplished by using variable voltage and variable frequency inverter system including induction motors. Especially, very simple logic to generate Pulse width Modulation(PWM) wave to control induction motor efficiently and three steps speed control method to regulate liquid quantity of the fish pump simply are suggested. Owing to the simplifies speed control and PWM wave generation technique, a cheaper microprocessor, 80C196KC, than a digital signal Processor(DSP) can be used to operate control algorithm in induction motor systems for real time control Also, a new idea of remote control for the simplifies novel inverter system by Programmable logic Controller(PLC) without special output unit, digital to analog converter(D/A), is suggested in this paper. Consequently the function of reliability, availability and serviceability of the fish pump system are developed. It will be expected to contribute expanding of application of the fish pump in aquaculture farms because the system can reduce energy consumption and some difficulties according to manual operation prominently.

  • PDF

신뢰도 비용 최소화를 위한 개폐기의 최적 자동화율 도출에 관한 연구 (Study of Drawing Optimum Switch Automation Rate to Minimize Reliability Cost)

  • 채희석;강병욱;김진석;문종필;김재철
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.297-302
    • /
    • 2015
  • Replacing a manual switch installed in a feeder for a distribution system with an automatic one increases the reliability of the electric power system. This is because the automatic switch can shorten the duration of a fault the customer experiences by splitting the faulty section faster than the manual one does. However, improving the reliability of the distribution system may increase investment costs. Here, the investment costs include automatic switch cost, replacement work cost and labor cost. For this reason, importance should be attached to the proper balance between the increase of the investment costs and the improvement of the reliability of the distribution system. This article analyzed reliability index and economics when manual switches installed in a feeder (RBTS Bus2 model) was replaced by automatic ones. In addition, it attempted to draw the optimum rate of automation of manual switches by automatic ones using the GRG optimization method, considering the current economic requirements.

Mathematical Model of Two-Degree-of-Freedom Direct Drive Induction Motor Considering Coupling Effect

  • Si, Jikai;Xie, Lujia;Han, Junbo;Feng, Haichao;Cao, Wenping;Hu, Yihua
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1227-1234
    • /
    • 2017
  • The two-degree-of-freedom direct drive induction motor, which is capable of linear, rotary and helical motion, has a wide application in special industry such as industrial robot arms. It is inevitable that the linear motion and rotary motion generate coupling effect on each other on account of the high integration. The analysis of this effect has great significance in the research of two-degree-of-freedom motors, which is also crucial to realize precision control of them. The coupling factor considering the coupling effect is proposed and addressed by 3D finite element method. Then the corrected mathematical model is presented by importing the coupling factor. The results from it are verified by 3D finite element model and prototype test, which validates the corrected mathematical model.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

An Electric-Field Coupled Power Transfer System with a Double-sided LC Network

  • Xie, Shi-Yun;Su, Yu-Gang;Zhou, Wei;Zhao, Yu-Ming;Dai, Xin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.289-299
    • /
    • 2018
  • Electric-field coupled power transfer (ECPT) systems employ a high frequency electric field as an energy medium to transfer power wirelessly. Existing ECPT systems have made great progress in terms of increasing the transfer distance. However, the topologies of these systems are complex, and the transfer characteristics are very sensitive to variations in the circuit parameters. This paper proposes an ECPT system with a double-sided LC network, which employs a parallel LC network on the primary side and a series LC network on the secondary side. With the same transfer distance and output power, the proposed system is simpler and less sensitive than existing systems. The expression of the optimal driving voltage for the coupling structure and the characteristics of the LC networks are also analyzed, including the transfer efficiency, parameter sensitivity and total harmonic distortion. Then, a design method for the system parameters is provided according to these characteristics. Simulations and experiments have been carried out to verify the system properties and the design method.

Repetitive Control with Specific Harmonic Gain Compensation for Cascaded Inverters under Rectifier Loads

  • Lv, Zheng-Kai;Sun, Li;Duan, Jian-Dong;Tian, Bing;Qin, HuiLing
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1670-1682
    • /
    • 2018
  • The further improvement of submarine propulsion is associated with the modularity of accumulator-fed inverters, such as cascaded inverters (CIs). CI technology guarantees smooth output voltages with reduced switch frequencies under linear loads. However, the output voltages of CIs are distorted under rectifier loads. This distortion requires harmonic suppression technology. One such technology is the repetitive controller (RC), which is commonly applied but suffers from poor performance in propulsion systems. In this study, the FFT spectrum of a CI under rectifier load is analyzed, and the harmonic contents are uneven in magnitude. For the purpose of harmonic suppression, the control gains at each harmonic frequency should be seriously considered. A RC with a specific harmonic gain compensation (SHGC) for CIs is proposed. This method provides additional control gains at low-order harmonic frequencies, which are difficult to achieve with conventional RCs. This SHGC consists of a band-pass filter (BPF) and proportional element and is easy to implement. These features make the proposed method suitable for submarine propulsion. Experimental results verify the feasibility of the improved RC.

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

Implementation of Image Transmission Based on Vehicle-to-Vehicle Communication

  • Piao, Changhao;Ding, Xiaoyue;He, Jia;Jang, Soohyun;Liu, Mingjie
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.258-267
    • /
    • 2022
  • Weak over-the-horizon perception and blind spot are the main problems in intelligent connected vehicles (ICVs). In this paper, a V2V image transmission-based road condition warning method is proposed to solve them. The encoded road emergency images which are collected by the ICV are transmitted to the on-board unit (OBU) through Ethernet. The OBU broadcasts the fragmented image information including location and clock of the vehicle to other OBUs. To satisfy the channel quality of the V2X communication in different times, the optimal fragment length is selected by the OBU to process the image information. Then, according to the position and clock information of the remote vehicles, OBU of the receiver selects valid messages to decode the image information which will help the receiver to extend the perceptual field. The experimental results show that our method has an average packet loss rate of 0.5%. The transmission delay is about 51.59 ms in low-speed driving scenarios, which can provide drivers with timely and reliable warnings of the road conditions.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.