• Title/Summary/Keyword: automation equipment

Search Result 513, Processing Time 0.028 seconds

Design and Analysis of Cell Controller Operation for Heat Process (열공정에 대한 셀 콘트롤러 운영의 설계와 해석)

  • So, Ye In;Jeon, Sang June;Kim, Jeong Ho
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.22-31
    • /
    • 2020
  • The construction and operation of industrial automation has been actively taking place from manufacturing plan to production for improving operational efficiency of production line and flexibility of equipment. ISO/TC184 is standardizing on operating methods that can share information of programmable device controllers such as PLC and IoT that are geographically distributed in the production line. In this study, the design of the cell controller consists of PLC group and IoT group that perform signals such as temperature sensors, gas sensors, and pressure sensors for thermal processes and corresponding motors or valves. The operation and analysis of the cell controller were performed using SDN(Software Defined Network) and the three types of process services performed in thermal processes are real-time transmission service, loss-sensitive large-capacity transmission service, and normal transmission service. The simulation result showed that the average loss rate improved by about 17% when the traffic increased before and after the application of the SDN route technique, and the delay in the real-time service was as low as 1 ms.

  • PDF

AI/BIG DATA-based Smart Factory Technology Status Analysis for Effective Display Manufacturing (효과적인 디스플레이 제조를 위한 AI/BIG DATA 기반 스마트 팩토리 기술 현황 분석)

  • Jung, Sukwon;Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.471-477
    • /
    • 2021
  • In the field of display, a smart factory means more efficient display manufacturing using AI/BIG DATA technology not only for job automation, but also for existing process management, moving facilities, process abnormalities, and defect classification. In the past, when defects appeared in the display manufacturing process, the classification of defects and coping with process abnormalities were different, a lot of time was consumed for this. However, in the field of display manufacturing, advanced process equipment must be used, and it can be said that the competitiveness of the display manufacturing industry is to quickly identify the cause of defects and increase the yield. In this paper, we will summarize the cases in which smart factory AI/BIG DATA technology is applied to domestic display manufacturing, and analyze what advantages can be derived compared to existing methods. This information can be used as prior knowledge for improved smart factory development in the field of display manufacturing using AI/BIG DATA.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

On the Integrated Operation Concept and Development Requirements of Robotics Loading System for Increasing Logistics Efficiency of Sub-Terminal

  • Lee, Sang Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.

A study on Protective Coordination of MCA for Performing of the Pad Mounted Transformer's inside Protective Device (지상변압기의 내부 보호장비 작동을 위한 MCA 보호협조에 대한 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.5-7
    • /
    • 2022
  • KEPCO's plan is undergoing a trial operation to replace the open-loop section with ring main units configuration where underground distribution lines are installed, by linking the multi-way circuit breakers auto (MCA) on the power side of each pad-mounted transformer. However, ring main units application mentioned above may cause the ripple effects, when implementing the configuration without a study of protection coordination. Because ring main units with classical pre-set protection devices contribution in fault condition didn't consider yet. For the reliable ring main units operation, it is necessary to resolve several protection issues such as the protection coordination with substation side, prevention of the transformer inrush current. These issues can radically deteriorate the distribution system reliability Hence, it is essential to design proper protection coordination to reduce these types of problems. This paper presents a scheme of ring main units' configuration and MCA's settings of time-current curves to preserve the performance of protection coordination among the switchgears considering constraints, e.g. prevention of the ripple effects (on the branch section when a transformer failure occurs and the mainline when a branch line failure occurs). It was confirmed that the propagation of the failure for each interrupter segment could be minimized by applying the proposed TCC and the interrupter settings for the MCAs (branch, transformer). Further, it was verified that the undetected area of the distribution automation system (DAS) could be supplemented by having the MCA configurated ring main units operate first, instead of the internal protection equipment in the transformer such as the fuse, STP when a transformer failure occurs.

AN ANALYSIS ON THE LABOR/CAPITAL PRODUCTIVITY OF THE CONSTRUCTION INDUSTRY

  • Minsoo Choi;Jinu Kim;Moohan Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.968-973
    • /
    • 2005
  • The purpose of this study is to clarify the reality of labor and capital productivity in the construction industry through an industry-level approach and to analyze the relationship between labor and capital productivity using a Cobb-Douglas production function. According to the research results, the construction industry has shown a very high capital productivity, while labor productivity has kept up a low level during the 1980s and 1990s. The reason was because of the lack of skillful construction workers and the decrease of capital. Meanwhile, the construction productivity has greatly increased since 2000 when there was no change in wages. This was because of a large inflow of low-wage foreign workers while the amount of value added has dramatically increased due to the liberalized sale price of apartment buildings. According to the analysis by the Cobb-Douglas production function, the elasticity coefficient of V/L to K/L in the construction industry had decreased from 1.1663 in the 1st period(1971-1988) to 0.4465 in the 2nd period(1989-1997), and to 0.1664 in the 3rd period(1998-2003). Such a result means that the allocation of labor has gradually increased while the allocation of capital has decreased. Moreover there was a big increase in allocation of labor after 1998 due to the excessive deterioration of capital. In conclusion, in order to raise the construction productivity and to avoid labor-intensive production methods, investment for capital should be more increased. In particular, new machinery and equipment that can actually substitute human labor in construction sites should be more developed and applied to construction sites.

  • PDF

Verification of Reproducibility of VCS2000 Equipment for Mechanical Measurement of Korean Landrace×Yorkshire (F1), F1×Duroc (LYD) Pig Carcasses

  • Yunhwan Park;Kwantae Kim;Jaeyoung Kim;Jongtae Seo;Jungseok Choi
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.553-562
    • /
    • 2023
  • With an increase in meat consumption, the need to measure the weight of each primal cut of pork has increased. Recently, automation devices have been used to measure the weight of each primal cut of pork. The objective of this study was to investigate the accuracy of VCS2000, one of the non-invasive pig carcass analyzers. Production levels of 7 primal cuts of 50 pigs were measured with VCS2000. Average error rates between dissected value for each primal cut and VCS2000 measurement values of ham, shoulder picnic, belly, loin, and shoulder blade were around 5%. Average error rates for spare rib and tenderloin were about 10%. Correlation coefficients between the dissected value and the VCS2000 measured value for ham, shoulder picnic, loin, belly, and shoulder blade were high at 0.66-0.83. Correlation coefficients of spare rib and tenderloin were low at 0.35 and 0.47. Coefficient of determination of the VCS2000 measured value for each primal cut by regression analysis was 0.77 or more for ham, shoulder picnic, loin, and shoulder blade and 0.63 for belly. Coefficients of determination for spare rib and tenderloin were low at 0.40 and 0.27. In addition, the coefficient of determination of VCS2000 for each primal cut was higher than that of the dissected value for all primal cuts. In conclusion, pig carcass analysis using the VCS2000 has a high reliability for pork cuts with high production levels, but a relatively low reliability for pork cuts with low production levels and high fat levels.

Effect of Microstructure Change According to Tempering Temperature on Room Temperature Tensile Properties in Carbon Steel of SM30C (SM30C의 탄소강에서 템퍼링 온도에 따른 미세조직 변화가 상온 인장특성에 미치는 영향)

  • Yebeen Ji;Kibeom Kim;Jung jong Min;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • In order to process plastic with similar mechanical performance to metal materials, it is necessary to improve the strength and hardness of core parts of the injection equipment in extrusion system. The tempering process is a heat treatment performed to reduce brittleness and improve elongation along with improvement of dimensional defects of martensite formed after quenching. In this study, changes in microstructure and mechanical properties according to temperature were evaluated after quenching and tempering of SM30C material. As a result, the strength and hardness were gradually decreased by tempering at 250~400℃, and the decrease was greatly increased under the tempering condition at 450℃. Under the tempering condition of 200~400℃, the main structure was lath martensite, and the precipitation amount and size of needle-shaped cementite increased along the lath with the increase of the tempering temperature. Most of the shape of cementite has a needle-like structure, and the formation of some spherical cementite is observed. Under the tempering condition of 450℃, a mixed structure of ferrite and martensite was formed according to the decomposition of martensite.

A Path Generation Method Considering the Work Behavior of Operators for an Intelligent Excavator (운전자의 작업행태를 고려한 지능형 굴삭기의 이동경로 생성 방법)

  • Kim, Sung-Keun;Koo, Bonsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.433-442
    • /
    • 2010
  • Recent decrease in the availability of experienced skilled labor and a corresponding lack of new entrants has required the need for automating many of the construction equipment used in the construction industry. In particular, excavators are widely used throughout earthwork operations and automating its tasks enables work to be performed with higher productivity and safety. This paper introduces an optimal path generation method which is one of the core technologies required to make "Intelligent" excavators a reality. The method divides a given earthwork area into unit cells, identifies networks created by linking these cells, and identifies the optimal path an excavator should follow to minimize its total transportation costs. In addition, the method also accounts for drainage direction and path continuity to ensure that the generated path considers site specific conditions.

Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment (자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발)

  • Ju-Young Kim;Jae-Ryul Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.