• 제목/요약/키워드: automatic velocity analysis

검색결과 71건 처리시간 0.022초

수평적 속도변화대에서 자동속도분석 알고리즘을 이용한 속도분석 실험연구 (An Experimental Study on Velocity Analysis by Automatic Velocity Analysis Algorithms in Layers Having Lateral Velocity Anomaly)

  • 윤광진;양승진
    • 자원환경지질
    • /
    • 제30권5호
    • /
    • pp.469-476
    • /
    • 1997
  • In the conventional velocity analysis, the peaks of a semblance panel are picked and the stacking velocities of the peaks are assumed as RMS velocities from which interval velocities are determined. This velocity analysis technique is correct only for horizontal homogeneous layes and incurs error in a layer whose velocity varies laterally. Tediousness of peak picking and error in velocity analysis can be reduced by automatic velocity analysis techniques. An automatic velocity analysis algorithm has been presented in order to improve these problems by considering the stacking velocity from the view point of interval velocity model and by relating the stacking velocity and the interval velocity with the traveltimes. In this paper, we apply the automatic velocity analysis method to simple models having lateral velocity anomaly to verify the effectivenesses and limits of this method. From the results of numerical experiments, we can determine the interval velocites without pickings of the stacking velocities in the one-dimensional velocity analysis and the general patterns of the laterally varying interval velocities appear in the two-dimensional case. However, the interval velocity and the depth of velocity anomaly determined by two-dimensional automatic velocity analysis are somewaht discrepant in those of the theoretical model.

  • PDF

고해상도 Bootstrapped Differential Semblance를 이용한 자동 속도분석 (Automatic Velocity Analysis by using an High-resolution Bootstrapped Differential Semblance Method)

  • 최형욱;변중무
    • 지구물리와물리탐사
    • /
    • 제16권4호
    • /
    • pp.225-233
    • /
    • 2013
  • 효율적이고 객관적인 NMO 속도분석을 위해 사용되는 자동 속도분석의 정확성은 속도 빛띠의 속도 해상도에 많은 영향을 받는다. 본 연구에서는 고해상도 BDS (high-resolution Bootstrapped Differential Semblance)를 이용하여 속도 빛띠를 구성하고, 이를 이용하여 공통 중간점 모음 별로 병렬적으로 자동 속도분석을 수행하는 모듈을 개발하였다. 또한 이 고해상도 BDS를 이용하는 자동 속도분석 모듈의 속도분석 결과를 BDS (Bootstrapped Differential Semblance)를 이용한 자동 속도분석의 결과와 비교하였다. 수평층을 포함한 속도모델로부터 얻은 합성 탄성파 탐사자료를 생성하고 이를 이용하여 개발된 모듈을 검증한 결과 본 연구를 통해 개발된 모듈이 좀 더 정확한 속도를 추정하는 것을 확인하였다. 또한 현장자료에 개발된 모듈을 적용하여 이벤트의 연속성이 향상된 공통 중간점 겹쌓기 단면을 구할 수 있는 NMO 속도를 추정하였다.

고해상도 속도스펙트럼과 전역탐색법을 이용한 자동속도분석 (Automatic velocity analysis using bootstrapped differential semblance and global search methods)

  • 최형욱;변중무;설순지
    • 지구물리와물리탐사
    • /
    • 제13권1호
    • /
    • pp.31-39
    • /
    • 2010
  • 자동속도분석의 목적은 대용량 탄성파탐사자료로부터 정확한 속도를 효율적으로 추출하는 것이다. 본 연구에서는 bootstrapped differential semblance (BDS) 방법과 몬테카를로 역산법을 이용하여 효율적인 자동속도분석 알고리듬을 개발하였다. 자동속도분석을 통해 보다 정확한 결과를 계산하기 위하여 우리가 개발된 알고리듬에서는 일반적인 셈블런스보다 높은 속도해상도를 제공하는 BDS를 일관성 측정법으로 사용한다. 게다가, 개발된 자동속도분석 알고리듬의 처리시간을 줄이고, 효율성을 증가시키기 위해 조건적으로 초기속도모델을 결정하는 단계를 추가하였다. 그리고 잘못된 피크값을 피킹하는 문제를 방지하기 위해서 새로운 RMS 속도제약조건을 선택적으로 사용하였다. 개발된 자동속도분석 모듈의 성능을 시험하기 위해서 합성탄성파탐사자료와 동해에서 취득한 현장자료에 개발된 모듈을 적용하였다. 본 연구에서 개발원 알고리듬을 통해 얻은 속도결과를 적용하여 안든 중합단면들은 일관된 반사이벤트들과 NMO보정 결과의 질이 향상된 것을 보여준다. 더욱이, 개발원 알고리듬은 구간속도제약조건을 확인하면서 구간속도를 먼저 구하고 이를 이용하여 RMS 속도를 계산하기 예문에, 지질학적으로 타당한 구간속도를 구할 수 있다. 또한, 구간속도의 경계등이 중합단면도에서 나타나는 반사이벤트들과 잘 부합된다.

트랙터 8단 자동변속기 기어 열 설계 (Gear Train Design of 8-Speed Automatic Transmission for Tractor)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권2호
    • /
    • pp.30-36
    • /
    • 2013
  • Tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. Most older tractors use a manual transmission. However, as the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. In order to give the operator a large degree of control in field work, 24 gears with automatic 8-speed and manual 3-speed are arranged in transmission. This paper deals with the gear train that is designed for 8-speed automatic transmission by the engagement of multi-disk clutches. The gear ratio for each speed as well as power transmission mechanism is analyzed through velocity analysis. In addition, constraints of mesh gear ratio are derived by investigating the power flow path in velocity diagram for the given 8-speed gear ratio.

건전지 자동화 조립라인의 라벨링부의 Virtual Prototype 개발 (Development of Virtual Prototype for Labeling: Unit on the Automatic Battery Manufacturing Line)

  • 정상화;차경래;김현욱;신병수;나윤철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.357-362
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. In this thesis, dynamic characteristics of the steel can labeling machine on the automatic cell assembly line are studied. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed for each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Therefore, Virtual Engineering of the steel can labeling machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

피드포워드를 이용한 속도리플 자동 보상 알고리즘 (Automatic Velocity Ripple Compensation Algorithm by Feedforward Control)

  • 한지희;김정한
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.951-959
    • /
    • 2013
  • In order to improve the speed performance of the direct drive mechanical systems, a comprehensive analysis of the velocity ripples of blushless DC motors should be required. Every motor has a certain level of torque ripples when it generates power, and the generated torque ripple also makes the velocity ripples in the final output stage in speed control system. In this paper, a novel algorithm for reducing velocity ripples is proposed based on the modeling of torque ripples for BLDC motors. Various algorithms have been made for torque ripples, but usually they should be installed inside the amplifier logic, result in the difficulties of flexibility for various kinds of torque ripples. The proposed algorithm was developed for being ported in the controller not the amplifier, and it has the capability of the automatic compensation adjustment. The performance of the proposed algorithm was verified by effective simulations and experiments.

병진운동용 원통캠기구의 운동해석을 위한 수치해석법 연구 (A Study on Numerical Method for Motion Analysis of Cylindrical Cam with Translate Follower)

  • 김상진;신중호;김대원;박세환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.719-722
    • /
    • 2002
  • Cylindrical cam mechanisms are used commonly in many automatic machinery. But the cylindrical cam is very difficult to design and manufacture the shape. The motion analysis of the cylindrical cam can check the accuracy between designed data and manufactured data of the cam shape and can reproduce without the cam design data. The motion analysis of the cylindrical cam consists of displacement analysis, velocity analysis and acceleration analysis. This paper performs the motion analysis of a cylindrical cam with translating follower by using a relative velocity method and a central difference method. The displacement is calculated by using the central difference method and the velocity is calculated by the relative velocity method. The relative velocity method is defined by the relative motion between follower and cam at a center of a follower roller. The central difference method is derived in the 3 dimensional space.

  • PDF

반도체 약액용 자동제어 플라스틱 밸브의 내부 유동해석 (Internal Flow Analysis and Structural Design in Plastic Automatic Control Valve for the Semiconductor Chemical Liquid)

  • 이규훈;이응석;이민기;김진수;배일진
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.311-315
    • /
    • 2012
  • Diaphragm type noncontact automatic control valve is a valve for controling acidic PR(Photo Resist) liquid used in the semiconductor process. PR is photosensitive liquid that changes phases depending on light transmittance. PR is very toxic and expensive; the purpose of this paper is to address methods that prevent loss due to leaks. The design of noncontact precise automatic control valve is expected to play an important role in controlling fluid flow, therefore influencing energy conservation and environmental improvement. In this paper, diaphragm type automatic control valve's part design, assembly and simulation are introduced. Also, through the analysis of fluid flow the valve's internal velocity, pressure, and turbulent intensity are interpreted. This paper proposes to contribute to the improvement of the valve's performance.

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.

건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발 (Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line)

  • 정상화;차경래;신병수;나윤철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF