• 제목/요약/키워드: automatic tagging

검색결과 49건 처리시간 0.027초

Applying Token Tagging to Augment Dataset for Automatic Program Repair

  • Hu, Huimin;Lee, Byungjeong
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.628-636
    • /
    • 2022
  • Automatic program repair (APR) techniques focus on automatically repairing bugs in programs and providing correct patches for developers, which have been investigated for decades. However, most studies have limitations in repairing complex bugs. To overcome these limitations, we developed an approach that augments datasets by utilizing token tagging and applying machine learning techniques for APR. First, to alleviate the data insufficiency problem, we augmented datasets by extracting all the methods (buggy and non-buggy methods) in the program source code and conducting token tagging on non-buggy methods. Second, we fed the preprocessed code into the model as an input for training. Finally, we evaluated the performance of the proposed approach by comparing it with the baselines. The results show that the proposed approach is efficient for augmenting datasets using token tagging and is promising for APR.

태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법 (Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology)

  • 김재승;문현정;우용태
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.167-179
    • /
    • 2009
  • 본 논문에서는 태그 온톨로지를 이용하여 표준화된 태그를 추천할 수 있는 기법을 제안하였다. 태그 추천 기법은 기존에 생성된 대량의 문서 집합을 대상으로 자동 태깅하기 위한 기법(TWCIDF)과 신규 문서를 대상으로 태그를 추천하기 위한 기법(TWCITC)으로 구성된다. 태그집합은 전처리 과정, 태그 온톨로지를 이용한 표준화 작업, 자동 태깅 및 추천을 위한 랭킹 부여과정을 거쳐 구성된다. 전처리 과정에서는 의미있는 복합명사를 찾기 위한 용어결합과정을 사용하였고, 표준화 작업 과정에서는 용어의 오탈자 및 유사용어를 처리하였다. 본 논문에서 제안한 기법의 실험 결과, 추천 태그의 정확성을 유지하면서도 실시간으로 자동태깅 및 태그 추천이 가능함을 보여주었다.

  • PDF

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • 제5권3호
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

An Automatic Tagging System and Environments for Construction of Korean Text Database

  • Lee, Woon-Jae;Choi, Key-Sun;Lim, Yun-Ja;Lee, Yong-Ju;Kwon, Oh-Woog;Kim, Hiong-Geun;Park, Young-Chan
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1082-1087
    • /
    • 1994
  • A set of text database is indispensable to the probabilistic models for speech recognition, linguistic model, and machine translation. We introduce an environment to canstruct text databases : an automatic tagging system and a set of tools for lexical knowledge acquisition, which provides the facilities of automatic part of speech recognition and guessing.

  • PDF

자동 Deep Tagging 에 의한 하이퍼비디오 브라우저의 설계와 구현 (Design and Implementation of Hyper-Video Browser by Automatic Deep Tagging)

  • 조명지;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.153-156
    • /
    • 2007
  • 멀티미디어 자료는 빠르게 증가하고 있는 반면, 텍스트 기반의 검색엔진을 이용한 멀티미디어 자료 검색은 자료 내부를 검색할 수 없는 단점으로 인하여 검색된 정보의 정확성과 정확한 정보의 위치를 찾는 것이 어렵다. 그래서 이러한 문제를 해결하고자 멀티미디어 Deep Tagging 개념을 이용하여 비디오 파일에 자동으로 Deep Tagging 을 생성하고 또한 기존 하이퍼텍스트 기반의 하이퍼링크를 하이퍼비디오로 확장한 브라우저를 제안한다.

사전 정보를 이용한 단어 중의성 해소 모형에 관한 실험적 연구 (An Experimental Study on an Effective Word Sense Disambiguation Model Based on Automatic Sense Tagging Using Dictionary Information)

  • 이용구;정영미
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.321-342
    • /
    • 2007
  • 이 연구에서는 수작업 태깅없이 기계가독형 사전을 이용하여 자동으로 의미를 태깅한 후 학습데이터로 구축한 분류기에 대해 의미를 분류하는 단어 중의성 해소 모형을 제시하였다. 자동 태깅을 위해 사전 추출 정보 기반방법과 연어 공기 기반 방법을 적용하였다. 실험 결과, 자동 태깅에서는 복수 자질 축소를 적용한 사전 추출 정보 기반 방법이 70.06%의 태깅 정확도를 보여 연어 공기 기반 방법의 56.33% 보다 24.37% 향상된 성능을 가져왔다. 사전 추출 정보 기반 방법을 이용한 분류기의 분류 정학도는 68.11%로서 연어 공기 기반 방법의 62.09% 보다 9.7% 향상된 성능을 보였다. 또한 두 자동 태깅 방법을 결합한 결과 태깅 정확도는 76.09%, 분류 정확도는 76.16%로 나타났다.

조건부 랜덤 필드를 이용한 특허 문서의 개체명 인식 (Named Entity Recognition for Patent Documents Based on Conditional Random Fields)

  • 이태석;신수미;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권9호
    • /
    • pp.419-424
    • /
    • 2016
  • 특허 정보검색에서는 검색 정확도를 높이거나 유사 특허들을 검색하기 위한 목적으로 청구항 등 특허 기술 문서의 내용을 대표하는 개체명 인식이 필요하다. 본 연구에서는 특허 개체명을 자동으로 인식하기 위하여 기계 학습 기법에서 태깅 문제 해결에 매우 우수한 성능을 보이는 조건부 랜덤 필드 기법을 이용하는 특허 개체명 인식 방법을 제안하였다. 개체명 태깅이 되어 있는 특허 문서 말뭉치에서 66만 어절을 학습용 데이터로 사용하여 특허 개체명 시스템을 구축하고, 7만 어절을 평가용 데이터로 사용하여 성능 평가를 하였다. 실험 결과에 의하면 개체명 인식 정확도는 93.6%이고, 개체명 인식 성능을 수작업 태깅 결과와 비교하여 일치도를 평가했을 때 카파 계수는 0.67로 나타났다. 이 카파 계수값은 두 사람의 수작업 태깅 결과에 대한 카파 계수 0.6 보다 높은 것으로 특허 개체명 인식 시스템이 수작업 태깅을 대신하여 실용적으로 활용될 수 있음을 확인하였다.

Part-of-speech Tagging for Hindi Corpus in Poor Resource Scenario

  • Modi, Deepa;Nain, Neeta;Nehra, Maninder
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.147-154
    • /
    • 2018
  • Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.

수동형 전자발신장치(Passive Integrated Transponder, PIT) 모니터링 기법 적용에 따른 어종별 생존율 평가 및 어도에서 어류이동성 평가 (The Evaluations of Fish Survival Rate and Fish Movements using the Tagging Monitoring Approach of Passive Integrated Transponders (PIT))

  • 최지웅;안광국
    • 한국환경과학회지
    • /
    • 제23권8호
    • /
    • pp.1495-1505
    • /
    • 2014
  • The objective of this study was to evaluate survival rate and fish movement (migration) using a tagging approach of passive integrated transponder (PIT) in Juksan Weir, which was constructed as a four major river restoration projects. For this study, survival rates of each fish species and the mobility of fish individuals were analyzed during 2 weeks by the insertion of PIT tags to various fish species in the laboratory. According to tagging tests in the laboratory, the survival rate 37.5% (30 survivals of 80 individuals) after the insertion of PIT tags. The survival rate of Carassius auratus and Hemibarbus labeo was 100% and 80% after the insertion of the tags, respectively, whereas it was only 13.3% for Zacco platypus. In the field experiments of Juksan Weir, 6 species and 157 individuals from 8 species (563 individuals) were detected in the fixed automatic data-logging system, indicating a detection rate of 27.9% in the fishway of Juksan Weir. In the meantime, some species with no or low detection rates in the fixed automatic data-logging system were turn out to be stagnant-type species, which prefer stagnant or standing water to live.

Sorting Instagram Hashtags all the Way throw Mass Tagging using HITS Algorithm

  • D.Vishnu Vardhan;Dr.CH.Aparna
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.93-98
    • /
    • 2023
  • Instagram is one of the fastest-growing online photo social web services where users share their life images and videos with other users. Image tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. Hashtags can be used on just about any social media platform, but they're most popular on Twitter and Instagram. Using hashtags is essentially a way to group together conversations or content around a certain topic, making it easy for people to find content that interests them. Practically on average, 20% of the Instagram hashtags are related to the actual visual content of the image they accompany, i.e., they are descriptive hashtags, while there are many irrelevant hashtags, i.e., stophashtags, that are used across totally different images just for gathering clicks and for search ability enhancement. Hence in this work, Sorting instagram hashtags all the way through mass tagging using HITS (Hyperlink-Induced Topic Search) algorithm is presented. The hashtags can sorted to several groups according to Jensen-Shannon divergence between any two hashtags. This approach provides an effective and consistent way for finding pairs of Instagram images and hashtags, which lead to representative and noise-free training sets for content-based image retrieval. The HITS algorithm is first used to rank the annotators in terms of their effectiveness in the crowd tagging task and then to identify the right hashtags per image.