• Title/Summary/Keyword: automatic repeat request (ARQ)

Search Result 59, Processing Time 0.023 seconds

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

Performance Analysis of Error Control Techniques Using Forward Error Correction in B-ISDN (B-ISDN에서 Forward Error Correction을 이용한 오류제어 기법의 성능분석)

  • 임효택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1372-1382
    • /
    • 1999
  • The major source of errors in high-speed networks such as Broadband ISDN(B-lSDN) is buffer overflow during congested conditions. These congestion errors are the dominant sources of errors in 1high-speed networks and result in cell losses. Conventional communication protocols use error detection and retransmission to deal with lost packets and transmission errors. However, these conventional ARQ(Automatic Repeat Request) methods are not suitable for the high-speed networks since the transmission delay due to retransmissions becomes significantly large. As an alternative, we have presented a method to recover consecutive cell losses using forward error correction(FEC) in ATM(Asynchronous Transfer Mode)networks to reduce the problem. The performance estimation based on the cell discard process model has showed our method can reduce the cell loss rate substantially. Also, the performance estimations in ATM networks by interleaving and IP multicast service are discussed.

  • PDF

A Hybrid Scheme of the Transport Error Control for SVC Video Streaming (SVC 비디오 스트리밍을 위한 복합형 전송 오류 제어 기법)

  • Seo, Kwang-Deok;Moon, Chul-Wook;Jung, Soon-Heung;Kim, Jin-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • In this paper, we propose a practical hybrid transport error control scheme to provide SVC video streaming service over error-prone IP networks. Many error control mechanisms for various video coding standards have been proposed in the literature. However, there is little research result which can be practically applicable to the multilayered coding structure of SVC(the scalable extension of H.264/AVC). We present a new hybrid transport error control scheme that efficiently combines layered Forward Error Correction(FEC) and Automatic Repeat Request(ARQ) for better packet-loss resilience. In the proposed hybrid error control, we adopt ACK-based ARQ instead of NACK-based ARQ to maximize throughput which is the amount of effective data packets delivered over a physical link per time unit. In order to prove the effectiveness of the proposed hybrid error control scheme, we adopt NIST-Net network emulator which is a general-purpose tool for emulating performance dynamics in IP networks. It is shown by simulations over the NIST-Net that the proposed hybrid error control scheme shows improved packet-loss resilience even with much less number of overhead packets compared to various conventional error control schemes.

A Distributed LT Codes-based Data Transmission Technique for Multicast Services in Vehicular Ad-hoc Networks

  • Zhou, Yuan;Fei, Zesong;Huang, Gaishi;Yang, Ang;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.748-766
    • /
    • 2013
  • In this paper, we consider an infrastructure-vehicle-vehicle (I2V2V) based Vehicle Ad-hoc Networks (VANETs), where one base station multicasts data to d vehicular users with the assistance of r vehicular users. A Distributed Luby Transform (DLT) codes based transmission scheme is proposed over lossy VANETs to reduce transmission latency. Furthermore, focusing on the degree distribution of DLT codes, a Modified Deconvolved Soliton Distribution (MDSD) is designed to further reduce the transmission latency and improve the transmission reliability. We investigate the network behavior of the transmission scheme with MDSD, called MDLT based scheme. Closed-form expressions of the transmission latency of the proposed schemes are derived. Performance simulation results show that DLT based scheme can reduce transmission latency significantly compared with traditional Automatic Repeat Request (ARQ) and Luby Transform (LT) codes based schemes. In contrast to DLT based scheme, the MDLT based scheme can further reduce transmission latency and improve FER performance substantially, when both the source-to-relay and relay-to-sink channels are erasure channels.

Analysis of Delay Distribution and Rate Control over Burst-Error Wireless Channels

  • Lee, Joon-Goo;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.355-362
    • /
    • 2009
  • In real-time communication services, delay constraints are among the most important QoS (Quality of Service) factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are used. For real-time communication services, it is very essential to predict data deliverability. This paper derives the delay distribution and the successful delivery probability within a given delay budget using a priori channel model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel is employed as an a Priori channel model, where a two-state Markov-modulated Bernoulli process $(MMBP_2)$ is used. for a posteriori information, the channel parameters, the queue-length and the initial channel state are assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

Linear network coding in convergecast of wireless sensor networks: friend or foe?

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Ruan, Xiukai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3056-3074
    • /
    • 2014
  • Convergecast is probably the most common communication style in wireless sensor networks (WSNs). And linear network coding (LNC) is a promising concept to improve throughput or reliability of convergecast. Most of the existing works have mainly focused on exploiting these benefits without considering its potential adverse effect. In this paper, we argue that LNC may not always benefit convergecast. This viewpoint is discussed within four basic scenarios: LNC-aided and none-LNC convergecast schemes with and without automatic repeat request (ARQ) mechanisms. The most concerned performance metrics, including packet collection rate, energy consumption, energy consumption balance and end-to-end delay, are investigated. Theoretical analyses and simulation results show that the way LNC operates, i.e., conscious overhearing and the prerequisite of successfully decoding, could naturally diminish its advantages in convergecast. And LNC-aided convergecast schemes may even be inferior to none-LNC ones when the wireless link delivery ratio is high enough. The conclusion drawn in this paper casts a new light on how to effectively apply LNC to practical WSNs.

Communications Protocol Used in the Wireless Token Rings for Bird-to-Bird

  • Nakajima, Isao;Juzoji, Hiroshi;Ozaki, Kiyoaki;Nakamura, Noboru
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • We developed a multicast communication packet radio protocol using a time-sharing tablet system ("wireless token ring") to achieve the efficient exchange of files among packet radio terminals attached to swans. This paper provides an overview of the system and the protocol of the packet communications. The packet device forming the main part of the transceiver developed is the Texas Instruments CC2500. This device consists of one call-up channel and one data transmission channel and could improve error frame correction using FEC (forward error correction) with 34.8 kbps MSK and receiving power of at least -64 dBm (output 1 dBm at distance of 200 m using 3 dBi antenna). A time-sharing framework was determined for the wireless token ring using call sign ordinals to prevent transmission right loss. Tests using eight stations showed that resend requests with the ARQ (automatic repeat request) system are more frequent for a receiving power supply of -62 dBm or less. A wireless token ring system with fixed transmission times is more effective. This communication protocol is useful in cases in which frequency resources are limited; the energy consumed is not dependent on the transmission environment (preset transmission times); multiple terminals are concentrated in a small area; and information (position data and vital data) is shared among terminals under circumstances in which direct communication between a terminal and the center is not possible. The method allows epidemiological predictions of avian influenza infection routes based on vital data and relationships among individual birds based on the network topology recorded by individual terminals. This communication protocol is also expected to have applications in the formation of multiple in vivo micromachines or terminals that are inserted into living organisms.

Relay Selection Algorithm for Two-way Multiple Relay Channels (양방향 다중 중계기 채널에서의 중계기 선택 기법)

  • Kang, Yoo-Keun;Lee, Jae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.134-143
    • /
    • 2009
  • In this paper, we propose a new relay selection algorithm for a two-way multiple relay channel. In the two-way multiple relay channel, two users exchange information with each other via multiple relays. The relays use a decode-and-forward or amplify-and-forward protocol, and exploit the combining process of the received packets to reduce the required channel resources. In the multiple relay network, diversity gain is achieved as the number of relays increases, and various schemes are proposed. In this paper, we propose a single best relay selection scheme based on instantaneous channel conditions. First of all, relays obtain the instantaneous channel state information in the handshaking process, and a single best relay is selected in a distributed methods prior to data transmissions. The relay selection metric is proposed so that the end-to-end channel condition is evaluated based on the intantaneous channel state informations. Simulation results show that the proposed relay selection algorithm achieve the increased throughput and diversity order when the number of potential relays is increased.