• 제목/요약/키워드: automatic pilot

검색결과 112건 처리시간 0.023초

항공기 비정상 자세, 고도 및 속도 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on Design and Validation of Pilot Activated Recovery System to Recover Aircraft Abnormal Attitude, Altitude and Speed)

  • 김종섭;강임주
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1302-1312
    • /
    • 2008
  • Relaxed Static Stability(RSS) has been applied to improve flight performance of modern version supersonic jet fighters. Flight control systems are necessary to stabilize an unstable aircraft and to provide adequate handling qualities. Also, flight control systems of modern aircraft employ many safety measure to cope with emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes, speed and altitude. This paper addresses the concept of PARS with AARS(Automatic Attitude Recovery System), ATCS(Automatic Thrust Control System) and MARES(Minimum Altitude Recovery Estimation System), and this control law is designed by nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by real-time pilot evaluation using an HQS(Handling Quality Simulator). The result of evaluation reveals that the these systems support recovery of an aircraft unusual attitude and speed, and improve a safety of an aircraft.

항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery)

  • 김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

B747-8 Automatic Speedbrake Control System에 대한 해석적 연구 (Commentary Study on Automatic Speedbrake Control System of B747-8)

  • 문봉섭;남명관;최연철
    • 한국항공운항학회지
    • /
    • 제26권3호
    • /
    • pp.40-47
    • /
    • 2018
  • Reducing aircraft speed is the important task in the Rejected Takeoff and/or landing process. It is known that the effect of the Speedbrake is most important factor during the rejected takeoff maneuver in particular near V1 on the critical field length runway. The B747 designer created Automatic Speedbrake Control System to relieve pilot workload, improves brake operation and ensures proper Speedbrake operation for rejected take off. However, those who make the Rejected Takeoff procedure ignored the Automatic function and made it does all manual operations. This lets procedures difficult, complicated, and a cause of confusion and pilot error. This study was conducted to commentary the mechanism and function of the Automatic Speedbrake Control System of B747-8 and to propose appropriate B747-8 Rejected Take off procedures for its function to reduce the workload of pilots and contribute to reduce the possibility of pilot error during Rejected Takeoff.

항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구 (A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude)

  • 김종섭;조인제;강임주;허기봉;이은용
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.

중력 가속도로 인한 의식상실 감지 및 자동 회복 시스템 개발 (Development of Gravity-induced Loss of Consciousness(GLOC) Monitoring System and Automatic Recovery System)

  • 김종섭;황병문;강임주;장순용;김광윤;박명환
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.704-713
    • /
    • 2011
  • For many years, many pilots lost their lives and aircrafts due to GLOC(Gravity-induced Loss Of Consciousness). Due to the emergence of high-gravity maneuvering aircraft such as the F-16, F-15 and T-50, the automatic GLOC detection and recovery systems are necessary to increase the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering. This paper addresses the design of GLOC detection, warning and recovery algorithm based on a model of supersonic jet trainer. The system is solely controlled by the pilot's control input (i.e., control stick force) and aircraft status such as attitude, airspeed, altitude and so forth. And, moreover, it does not depend upon any pilot physiological condition. The test evaluation results show that the developed system supports the recovery of an aircraft from the unusual aircraft attitude and improves the aircraft safeties even when the pilot loses his consciousness due to high-G maneuvering.

모의비행 훈련을 통한 비행적성 판단모형 연구 (A Study on the Model of the Pilot Aptitude through the Simulated Flight using the Pilot Aptitude Research Equipment)

  • 최성옥;조용관;은희봉
    • 한국항공운항학회지
    • /
    • 제9권2호
    • /
    • pp.37-53
    • /
    • 2001
  • The Pilot Aptitude Research Equipment (PARE) at the Republic of Korea Air Force Academy had been installed to study the pilot aptitude of the cadets and the student pilots(Navy officers and Air Force officers from the pilot scholarship programs and the ROTC). The T-37 simulated flight program and procedure, and the automatic evaluated program for simulated flight have been orderly developed to use the PARE effectively. The cadets who entered started to get simulated flight training by using those developed programs. Their flight situation has been recorded by the automatic evaluated program whenever they got the training. And then the cadets who took part in the simulated flight started the elementary combat flight training in 1,999 after getting appointed to an office and finished the advanced combat flight training in 2,001. The study of the relationship between the simulated flight and the combat flight training has begun after finding their combat flight training results. The Logistic Discriminal Analysis, technique of the SAS statistical analysis package was used to study the pilot aptitude model through the simulated flight training. This study showed that it is possible to pre-estimate the result of the combat flight training using the PARE machine.

  • PDF

자동추력 제어시스템 개발 및 검증 (Development and Validation of Automatic Thrust Control System)

  • 김종섭;조인제;이동규
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.905-912
    • /
    • 2010
  • Modern version of advanced supersonic fighter have ATCS (Automatic Thrust Control System) to maximum flight safety, fuel efficiency and mission capability the integrated advanced autopilot system such as TFS (Terrain Following System), GCAS (Ground Collision Avoidance System) and AARS (Automatic Attitude Recovery System) and etc. This paper addresses the design and verification of ATCS based on advanced supersonic trainer in HILS (Hardware In the Loop Simulator) with minimum hardware modification to reduce of development cost and maintain of system reliability. The function of ATCS is consisted of target speed hold mode in UA (Up and Away) and angle of attack hold mode in PA (Power Approach). The real-time pilot evaluation reveals that pilot workload is minimized in cruise and approach flight stage by ATCS.

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • 이장호;유혁;김재은;안이기;김응태
    • 항공우주기술
    • /
    • 제4권2호
    • /
    • pp.7-14
    • /
    • 2005
  • 본 논문은 군에서 운용중인 대공포 사격 훈련용으로 개발한 무인 표적기용 자동비행시스템 개발에 관한 논문이다. 조종사에 의해 수동으로 운용중인 표적기를 자동화함으로써 조종사 측면에서는 비행업무를 경감시키고, 군 측면에서는 사격훈련 예산절감이라는 장점을 가지게 된다. 현재까지 개발된 대부분의 UAV(Unmanned Aerial Vehicle)는 항공기 자세를 측정하기 위해 AHRS(Attitude & Heading Reference System)와 IMU(Inertial Measurement Unit)등의 고가의 센서를 장착하고 있지만 이를 장착하고 무인기를 사격훈련용으로 사용하기에는 비용절감이라는 목적에 적합하지 않다. 이에 본 논문은 저가의 센서를 장착하고 자동비행이 가능하도록 저가형 자동비행시스템을 개발하였으며, 비행시험을 통하여 자동비행시스템 성능을 입증하였다.

  • PDF

극다중 안테나 셀룰러 시스템을 위한 파일럿 도약 기법 (Pilot Hopping Scheme for Massive Antenna Systems in Cellular Networks)

  • 김성환;반태원;이웅섭;류종열
    • 한국정보통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.718-723
    • /
    • 2017
  • 본 논문에서, 극다중 안테나 시스템을 다중셀 환경에 적용하고 기지국의 안테나 수가 무한하다고 가정한 상태에서, 파일럿 오염으로 인해 제한된 시스템 용량을 개선하는 파일럿 도약 기법을 제안한다. 기존의 파일럿 고정 방식은, 각 사용자가 긴 시간 동안 동일한 Signal-to-interference ratio (SIR)를 얻게된다. 따라서, 약한 간섭을 받게 된 사용자는 지속적으로 SIR이 높은 반면에, 강한 간섭을 받게 된 사용자의 SIR은 지속적으로 낮아서 서비스의 질이 저하된다. 본 논문에서 제안한 파일럿 도약 기법에서는 매 타임 슬롯마다 다른 파일럿 신호를 사용하며, 이에 따라 매번 다른 양의 간섭을 받게 되므로, 매 타임 슬롯마다 SIR이 요동치게 된다. 이러한 채널에서 Hybrid Automatic Repeat & reQuest (HARQ) 기법을 적용할 경우에, 아웃티지 확률과 전송률의 개선 효과를 얻을 수 있다. 본 논문에서는 극다중 안테나 시스템에 파일럿 도약 기법을 적용 후, 체이스 결합 유형의 HARQ를 적용하고 시뮬레이션을 통하여 성능이 개선됨을 보인다.