• 제목/요약/키워드: automatic machine learning

검색결과 302건 처리시간 0.024초

Discriminative Models for Automatic Acquisition of Translation Equivalences

  • Zhang, Chun-Xiang;Li, Sheng;Zhao, Tie-Jun
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.99-103
    • /
    • 2007
  • Translation equivalence is very important for bilingual lexicography, machine translation system and cross-lingual information retrieval. Extraction of equivalences from bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning methods are employed to filter translation equivalences. Discriminative features including translation literality, phrase alignment probability, and phrase length ratio are used to evaluate equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.

머신러닝을 활용한 자동 채색 시스템 알고리즘 비교 분석 (Comparison Analysis on Automatic Coloring System Algorithm Using Machine Learning)

  • 이송은;이지연;김나현;김진환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.792-794
    • /
    • 2017
  • 현재 머신러닝(Machine Learning) 기술은 기존의 머신러닝과 조합 및 변형 되어 조금 더 발전 된 형태로 연구되어지고 있다. 따라서 수많은 알고리즘이 개발되고 있는 시점이다. 본 연구는 최근 좋은 결과로 관심을 받고있는 GAN(Generative Adversarial Net)을 중심으로 IT기술의 머신러닝과 그림을 조합하여 자동채색을 목적으로 GAN 알고리즘을 비교하고 분석하고자 한다. GAN 알고리즘들 가운데서 'Conditional GAN'과 'Wasserstein GAN'을 사용하여 자동채색을 적용시켰고, 가장 부합한 알고리즘을 찾고 성능을 비교하여 어떠한 알고리즘이 '자동채색' 목적에 더 부합한지 비교하고 판단 한다.

A Machine Learning Approach to Detect the Dog's Behavior using Wearable Sensors

  • Aich, Satyabrata;Chakraborty, Sabyasachi;Joo, Moon-il;Sim, Jong Seong;Kim, Hee-Cheol
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.281-282
    • /
    • 2019
  • In recent years welfare of animals is the biggest challenge because animals, especially dogs are widely recognized as pet as well as they are using as service animals. So, for the wellbeing of the dog it is necessary to perform objective assessment to track their behavior in everyday life. In this paper, we have proposed an automatic behavior assessment system for dogs based on a neck worn and tail worn accelerometer and gyroscope platform, and data analysis techniques that recognize typical dog activities. We evaluate the system based on the analysis of 8 behavior traits in 3 dogs, incorporating 2 breeds of various sizes. Our proposed framework able to reproduce the manual assessment that is based on the video recording which is treated as gold standard that exhibits the real-life use case of automated dog behavior analysis.

  • PDF

Automatic COVID-19 Prediction with Optimized Machine Learning Classifiers Using Clinical Inpatient Data

  • Abbas Jafar;Myungho Lee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.539-541
    • /
    • 2023
  • COVID-19 is a viral pandemic disease that spreads widely all around the world. The only way to identify COVID-19 patients at an early stage is to stop the spread of the virus. Different approaches are used to diagnose, such as RT-PCR, Chest X-rays, and CT images. However, these are time-consuming and require a specialized lab. Therefore, there is a need to develop a time-efficient diagnosis method to detect COVID-19 patients. The proposed machine learning (ML) approach predicts the presence of coronavirus based on clinical symptoms. The clinical dataset is collected from the Israeli Ministry of Health. We used different ML classifiers (i.e., XGB, DT, RF, and NB) to diagnose COVID-19. Later, classifiers are optimized with the Bayesian hyperparameter optimization approach to improve the performance. The optimized RF outperformed the others and achieved an accuracy of 97.62% on the testing data that help the early diagnosis of COVID-19 patients.

Quick and easy game bot detection based on action time interval estimation

  • Yong Goo Kang;Huy Kang Kim
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.713-723
    • /
    • 2023
  • Game bots are illegal programs that facilitate account growth and goods acquisition through continuous and automatic play. Early detection is required to minimize the damage caused by evolving game bots. In this study, we propose a game bot detection method based on action time intervals (ATIs). We observe the actions of the bots in a game and identify the most frequently occurring actions. We extract the frequency, ATI average, and ATI standard deviation for each identified action, which is to used as machine learning features. Furthermore, we measure the performance using actual logs of the Aion game to verify the validity of the proposed method. The accuracy and precision of the proposed method are 97% and 100%, respectively. Results show that the game bots can be detected early because the proposed method performs well using only data from a single day, which shows similar performance with those proposed in a previous study using the same dataset. The detection performance of the model is maintained even after 2 months of training without any revision process.

국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계 및 기계학습 기반 자동 인덱싱 방법 연구 (Metadata Design and Machine Learning-Based Automatic Indexing for Efficient Data Management of Image Archives of Local Governments in South Korea)

  • 김인아;강영선;이규철
    • 한국기록관리학회지
    • /
    • 제20권2호
    • /
    • pp.67-83
    • /
    • 2020
  • 국내의 많은 지방자치단체에서는 지역에서 발생하는 사건들에 대한 시청각 기록물을 사람들이 쉽게 열람할 수 있도록 온라인 서비스를 제공하고 있다. 그러나 지자체들의 현재 사진 기록물 관리 방식은 표준적인 메타데이터가 부재하고 사진의 정보를 활용하지 않기 때문에 지자체 간 호환성과 검색 편의성이 낮은 문제점을 가진다. 이와 같은 문제점을 개선하기 위해, 본 논문에서는 국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계와 기계학습 기반 자동 인덱싱 기술을 제안한다. 먼저, 본 논문에서는 국내 지자체 사진 기록물에 특화된 메타데이터를 설계하여 지자체 간 사진 기록물의 호환성을 높이고, 사진의 기본 정보와 특성을 나타낼 수 있는 요소들을 메타데이터 항목에 포함함으로써 사진 기록물의 효율적인 관리를 가능하게 한다. 또한, 기계학습 기술을 기반으로 사진의 사건과 카테고리를 반영하는 정보인 사진 속 텍스트와 객체를 자동 인덱싱하여, 사진 기록물 검색 시 사용자 검색의 편의성을 높인다. 마지막으로, 본 논문에서는 제안한 방법을 사용하여 국내 지자체 사진 기록물에서 텍스트와 객체를 자동으로 추출하고, 추출한 내용과 기본 정보를 본 논문에서 설계한 사진 기록물 메타데이터 항목에 저장하는 프로그램을 개발하였다.

지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발 (Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education)

  • 허경
    • 실천공학교육논문지
    • /
    • 제16권4호
    • /
    • pp.449-457
    • /
    • 2024
  • 지능형 사물인터넷인 AIoT는 IoT 디바이스가 측정한 데이터를 수집하고 머신러닝 기술을 적용해 예측 모델을 만들어 활용하는 기술을 의미한다. AIoT 기술 교육을 위한 기존 연구에서는 교육용 AIoT 플랫폼 구축하고 사용법을 교육하는 데 초점을 맞추었다. 그러나, IoT 디바이스가 측정한 데이터로부터 머신러닝 모델이 자동 생성되고 활용되는 과정을 교육하는 사례 연구는 부족하였다. 본 논문에서는 AIoT 기술 교육을 위한 머신러닝 모델 활용 사례를 개발하였다. 본 논문에서 개발한 사례는 AIoT 디바이스의 데이터 수집, 데이터 전처리, 머신러닝 모델 자동 생성, 모델별 정확도 산출 및 유효 모델 결정, 유효 모델을 활용한 데이터 예측 단계들로 구성되었다. 본 논문에서는 AIoT 디바이스의 센서들이 서로 다른 범위의 값들을 측정하는 것을 고려하였고, 이에 따른 데이터 전처리 사례를 제시하였다. 또한 여러 머신러닝 모델들을 자동 생성하고 이 모델들 중 정확도가 높은 유효모델을 결정하여, AIoT 디바이스가 어떤 정보를 예측할 수 있는 가를 스스로 결정하는 사례를 개발하였다. 개발한 사례를 적용하면, AIoT를 활용한 예측기반 사물 제어와 같은 AIoT 활용 교육 콘텐츠를 다양하게 개발할 수 있다.

AttentionMesh를 활용한 국가과학기술표준분류체계 소분류 키워드 자동추천에 관한 연구 (A Study on Automatic Recommendation of Keywords for Sub-Classification of National Science and Technology Standard Classification System Using AttentionMesh)

  • 박진호;송민선
    • 한국도서관정보학회지
    • /
    • 제53권2호
    • /
    • pp.95-115
    • /
    • 2022
  • 이 연구의 목적은 국가과학기술표준분류체계의 소분류 용어를 기계학습 알고리즘을 적용하여 기술키워드 변환하는 것이 목적이다. 이를 위해 본 연구에서는 주제어 추천에 적합한 학습 알고리즘으로 AttentionMeSH를 활용했다. 원천데이터는 한국과학기술기획평가원이 정제한 2017년부터 2020년까지 4개년 연구현황 파일을 사용하였다. 학습은 과제명, 연구목표, 연구내용, 기대효과와 같이 연구내용을 잘 표현하고 있는 4개 속성을 사용했다. 그 결과 임계치(threshold)가 0.5일 때 MiF 0.6377이라는 결과가 도출됨을 확인하였다. 향후 실제 업무에 기계학습을 활용하고, 기술키워드 확보를 위해서는 용어관리체계 구축과 다양한 속성들의 데이터 확보가 필요할 것으로 보인다.

인공신경망을 이용한 DWT 전력스펙트럼 밀도 기반 자동화 기계 고장 진단 기법 (Fault Diagnosis Method for Automatic Machine Using Artificial Neutral Network Based on DWT Power Spectral Density)

  • 강경원
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.78-83
    • /
    • 2019
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 패턴 인식 문제로 해결하고자 한다. 본 논문에서 DWT와 인공신경망 기반 패턴 인식 기법을 이용한 자동화 기계 고장 진단 기법을 제안한다. 기계의 결함을 효과적으로 탐지하기 위해 DWT를 이용해 대역별 분해 후 최상위 고주파 부대역과 최하위 저주파 부대역을 제외한 나머지 부대역의 PSD를 구하여 인공신경망 기반 분류기의 입력으로 사용한다. 그 결과 본 연구에서 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있음을 보여준다.

Gradient Boosting을 이용한 가축분뇨 인계관리시스템 인계서 자동 검증 (Automated Verification of Livestock Manure Transfer Management System Handover Document using Gradient Boosting)

  • 황종휘;김화경;류재학;김태호;신용태
    • 한국IT서비스학회지
    • /
    • 제22권4호
    • /
    • pp.97-110
    • /
    • 2023
  • In this study, we propose a technique to automatically generate transfer documents using sensor data from livestock manure transfer systems. The research involves analyzing sensor data and applying machine learning techniques to derive optimized outcomes for livestock manure transfer documents. By comparing and contrasting with existing documents, we present a method for automatic document generation. Specifically, we propose the utilization of Gradient Boosting, a machine learning algorithm. The objective of this research is to enhance the efficiency of livestock manure and liquid byproduct management. Currently, stakeholders including producers, transporters, and processors manually input data into the livestock manure transfer management system during the disposal of manure and liquid byproducts. This manual process consumes additional labor, leads to data inconsistency, and complicates the management of distribution and treatment. Therefore, the aim of this study is to leverage data to automatically generate transfer documents, thereby increasing the efficiency of livestock manure and liquid byproduct management. By utilizing sensor data from livestock manure and liquid byproduct transport vehicles and employing machine learning algorithms, we establish a system that automates the validation of transfer documents, reducing the burden on producers, transporters, and processors. This efficient management system is anticipated to create a transparent environment for the distribution and treatment of livestock manure and liquid byproducts.