• Title/Summary/Keyword: automatic guided vehicle

Search Result 70, Processing Time 0.024 seconds

스테레오 비전에 의한 AGV의 주행라인 검출 시스템에 관한 연구

  • 전성재;조연상;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.275-275
    • /
    • 2004
  • 현재 국가 간의 경쟁력 확보를 위하여 자동화 기술의 개발을 통한 무인화ㆍ자동화를 실현함으로써 물류비용 및 인건비의 절감을 위한 노력에 많은 투자가 이루어지고 있는 실정이다 FMS를 구축하기 위해서는 AGV는 반드시 필요한 운송 장치로 현재 많은 제품들이 생산되어 현장에서 사용되고 있다. 현재 AGV는 바닥에 설치되어 있는 주행라인을 따라서 이동하는 방식이 가장 많이 사용되고 있으며, 주행라인 검출 방식으로 말이 사용되고 있는 전자유도 방식은 설비비용이 말이 들고 경로 수정이 어렵다는 문제점을 가지고 있다.(중략)

  • PDF

Operation control algorithm for an automated manufacturing system with travel of AGV (자동화생산시스템에서 AGV의 운송시간을 고려한 작업제어기법)

  • 최정상;고낙용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.287-297
    • /
    • 1997
  • This research is concerned with operation control problem for an automated manufacturing system which consists of two machine centers and a single automatic guided vehicle. The objective is to develop and evaluate heuristic scheduling procedures that minimize maximum completion time to be included travel time of AGV. A new heuristic algorithm is proposed and a numerical example illustrates the proposed algorithm. The heuristic algorithm is implemented for various cases by SLAM II. The results show that the proposed algorithm provides better solutions than the previous algorithms.

  • PDF

The study of the linetracer-developement for the Automatic Guided Vehicle using Infrared LED (적외선 LED를 이용한 무인 주행 저속 전기 자동차용 라인트레이서에 관한 연구)

  • Choi, Sung-Wook;Kim, Seok-Won;Choi, Jae-Ho;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1967-1969
    • /
    • 2003
  • 본 논문에서는 무인 주행 저속 전기 자동차 시스템 개발을 위한 적외선 LED 라인트레이서를 제작하였다. 햇빛에 의한 영향을 제거하기 위해 적외선 LED를 펄스(pulse)로 구동시켰으며 흰색선에서 반사된 적외선 신호를 photodiode를 이용하여 감지하였다. 감지된 신호는 증폭단과 Peak Detector를 거쳐 최종적으로 AVR MCU로 입력이 된 후 여러 상황에 따른 차량의 방향을 결정할 수 있도록 알고리즘를 통해 처리하였다. 실험을 통하여 본 논문에서 제작한 라이트레이서 모듈이 원하는 방향으로 동작함을 확인하였다.

  • PDF

A Study on the Design and Real-Time Operation of an Automatic Material Handling System (자동물류취급 시스템의 설계 및 실시간 운용에 관한 연구)

  • 김종원;우중원
    • Journal of the KSME
    • /
    • v.34 no.2
    • /
    • pp.101-111
    • /
    • 1994
  • 이 글에서는 무인운반차(AGV: Automated Guided Vehicle), 자동창고 (AS/RS: Automated Storage/Retrieval System), 콘베이어시스템, 바코드시스템 등의 자동물류취급시스템을 응용하여 극단적인 다품종 소량생산체제의 납기단축효과와 가동효율을 어떻게 향상시킬 수 있는지를 저 자들이 직접주도하여 설계 . 설치 . 가동중인 사례를 통하여 실증적으로 밝혀보고자 한다.

  • PDF

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

A Development of an Automatic Itinerary Planning Algorithm based on Expert Recommendation (전문가 추천 경로 패턴화 방법을 활용한 자동여정생성 알고리듬)

  • Kim, Jae Kyung;Oh, So Jin;Song, Hee Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • In this study, we developed an algorithm for automatic travel itinerary planning based on expert recommendation. The proposed algorithm generates an itinerary by patterning a number of travel routes based on the automatic itinerary generation method based on the routes recommended by travel experts. To evaluate the proposed algorithm, we generated 30 itinerary for Singapore, Bankok, and Da Nang using both algorithms and analyzed the mean difference of trip distances with t-test and interater reliability of those itineraries. The result shows that the itineraries based on the proposed algorithm is not different from that of VRP(Vehicle routing problem) algorithm and interater reliability is high enough to show that the proposed algorithm is effective enough for real-world usage.

The Edge Distribution Function Based Method of Trajectory Tracking for AGV

  • Yi, Un-Kun;Ha, Sung-Kil;Jung, Sung-Yun;Hwang, Hee-Jung;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1701-1704
    • /
    • 2005
  • We developed an machine vision method for navigation control of a traveling automatic guided vehicle(AGV) on desired trajectory with guided marks. The formulated EDF accumulates the edge magnitude for edge directions. The EDF has distinctive peak points at the vicinity of trajectory directions due to the directional and the positional continuities of desired trajectory. Examining the EDF by its shape parameters of the local maxima and symmetry axis results in identifying whether or not change in traveling direction of an AGV has occurred. Simulation results show that the presented method is useful for navigation control of AGV.

  • PDF

Signal Processing of Guide Sensor based on Multi-Masking and Center of Gravity Method for Automatic Guided Vehicle (다중 마스킹과 무게중심법을 기반한 AGV용 가이드 센서 신호처리)

  • Lee, Byeong-Ro;Lee, Ju-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • The most important device of the AGV is the guide sensor, and the typical function of this sensor is high accuracy and extraction of the road. If the accuracy of the guide sensor is low or the sensor device is extracted the wrong track, this causes the problems such as the AGV collision, track-out, the load falling due to AGV swing. In order to improve these problems, this study is proposed a signal processing method of the guide sensor based on multi-maskings and the center of gravity method, and evaluated its performance. As a result, the proposed method showed that the mean error of absolute value is 2.32[mm] and it showed performance improvement of 27[%] than the center of gravity method of existence. Therefore, when the proposed signal processing method is applied, It is thought that the posture control and driving stability of the AGV will be improved.

A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks (이중 랜드마크 인식 기반 AGV 이동 제어)

  • Jeon, Hye-Gyeong;Hong, Youn-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.721-730
    • /
    • 2012
  • In this paper the problem of a moving control of an automatic guided vehicle(AGV) which transports a dead body to a designated cinerator safely in a crematorium, an special indoor environment, will be discussed. Since a method of burying guided lines in the floor is not proper to such an environment, a method of moving control of an AGV based on infrared ray sensors is now proposed. With this approach, the AGV emits infrared ray to the landmarks adheres to the ceiling to find a moving direction and then moves that direction by recognizing them. One of the typical problems for this method is that dead zone and/or overlapping zone may exist when the landmarks are deployed. To resolve this problem, an algorithm of recognizing double landmarks at each time is applied to minimize occurrences of sensing error. In addition, at the turning area to entering the designated cinerator, to fit an AGV with the entrance of the designated cinerator, an algorithm of controlling the velocity of both the inner and outer wheel of it. The functional correctness of our proposed algorithm has been verified by using a prototype vehicle. Our real AGV system has been applied to a crematorium and it moves automatically within an allowable range of location error.

Optimal Material Flow of AGV based Production Lines (자동안내운반기로 된 생산라인의 최적 물류흐름)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.73-78
    • /
    • 1989
  • This paper concerns the production model that the Automatic Guided Vehicles(AGVs) is used as transporters in assembly line. The model suggests that assembly parts may inter the beginning of the line in multiple units instead entering one unit at a time. Costs are occured in proportion to the number of vehicle on the line and job flow time. Here, the objective of this model is to determine the number of vehicle to minimize the total cost for M products production. Theoretical results are proved which lead to the development of algorithm for solution search. The solution search procedure is illustrated by a numerical example.

  • PDF