• 제목/요약/키워드: automatic diameter control

검색결과 53건 처리시간 0.02초

조선 전기 자동물시계의 주전(籌箭) 연구 (A STUDY ON THE JUJEON OF AUTOMATIC CLEPSYDRA IN EARLY JOSEON DYNASTY)

  • 윤용현;김상혁;민병희;오경택
    • 천문학논총
    • /
    • 제36권3호
    • /
    • pp.65-78
    • /
    • 2021
  • Jagyeokru, an automatic striking water clock described in the Sejong Sillok (Veritable Records of King Sejong) is essentially composed of a water quantity control device and a time-signal device, with the former controlling the amount or the flow rate of water and the latter automatically informing the time based on the former. What connects these two parts is a signal generating device or a power transmission device called the 'Jujeon' system, which includes a copper rod on the float and ball-racked scheduled plates. The copper products excavated under Gongpyeong-dong in Seoul include a lot of broken plate pieces and cylinder-like devices. If some plate pieces are put together, a large square plate with circular holes located in a zigzag can be completed, and at the upper right of it is carved 'the first scheduled plate (一箭).' Cylinder-like devices generally 3.8 cm in diameter are able to release a ball, and have a ginkgo leaf-like screen fixed on the inner axis and a bird-shaped hook of which the leg fixes another axis and the beak attaches to the leaf side. The lateral view of this cylinder-like device appears like a trapezoid and mounts an iron ball. The function of releasing a ball agrees with the description of Borugak Pavilion, where Jagyeokru was installed, written by Kim Don (1385 ~ 1440). The other accounts of Borugak Pavilion's and Heumgyeonggak Pavilion's water clocks describe these copper plates and ball releasing devices as the 'Jujeon' system. According to the description of Borugak Pavilion, a square wooden column has copper plates on the left and right sides the same height as the column, and the left copper plate has 12 drilled holes to keep the time of a 12 double-hours. Meanwhile, the right plate has 25 holes which represent seasonal night 5-hours (Kyeong) and their 5-subhours (Jeom), not 12 hours. There are 11 scheduled plates for seasonal night 5-hours made with copper, which are made to be attached or detached as the season. In accordance with Nujutongui (manual for the operation of the yardstick for the clepsydra), the first scheduled plate for the night is used from the winter solstice (冬至) to 2 days after Daehan (大寒), and from 4 days before Soseol (小雪) to a day before the winter solstice. Besides the first scheduled plate, we confirm discovering a third scheduled plate and a sixth scheduled plate among the excavated copper materials based on the spacing between holes. On the other hand, the width of the scheduled plate is different for these artifacts, measured as 144 mm compared to the description of the Borugak Pavilion, which is recorded as 51 mm. From this perspective, they may be the scheduled plates for the Heumgyeonggak Ongru made in 1438 (or 1554) or for the new Fortress Pavilion installed in Changdeokgung palace completed in 1536 (the 31st year of the reign of King Jungjong) in the early Joseon dynasty. This study presents the concept of the scheduled plates described in the literature, including their new operating mechanism. In addition, a detailed model of 11 scheduled plates is designed from the records and on the excavated relics. It is expected that this study will aid in efforts to restore and reconstruct the automatic water clocks of the early Joseon dynasty.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • 인간식물환경학회지
    • /
    • 제23권6호
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

도시기온에 작용하는 입체적 토지피복의 영향 (Impacts of Three-dimensional Land Cover on Urban Air Temperatures)

  • 조현길;안태원
    • 한국조경학회지
    • /
    • 제37권3호
    • /
    • pp.54-60
    • /
    • 2009
  • 본 연구의 목적은 토지피복의 입체적 분포가 도시기온의 변화에 작용하는 영향을 구명하여 열섬현상 완화에 기여할 도시조경의 전략을 모색하는 것이다. 연구대상지는 서울시 24개 AWS 지점별 직경 300m 공간이었고, 대상공간의 여름철 에너지 수지 및 기온에 영향을 미칠 수 있는 다양한 변수의 자료를 구득하였다. 또한, 춘천시에서 연구목적을 고려한 6개 지점을 선정하여 기온을 실측하고, 기온변화에 더 민감하게 반응할 30m 소공간의 지점별 토지피복을 실사하여 서울시 의 경우와 비교하였다. 서울시 AWS 지점의 여름철 기온을 추정하는 단순회귀모델을 도출한 결과, 식생체적, 녹지면적, 건물체적, 건물면적, 인구밀도, 포장로면적 등의 변수가 통계적으로 유의하게 여름철 기온변화에 기여하는 것으로 나타났다. 이들 중 기온변화의 설명력이 가장 높은 변수는 식생체적과 건물체적이었다. 기온변화에 유의한 변수들을 조합하여 유도한 다중회귀모델에서도 식생체적과 건물체적의 양 변수가 통계적으로 가장 적합한 모델을 생성하였다. 이 다중회귀모델에 따르면 식생체적의 10% 증가는 기온을 약 0.14% 감소시킨 반면, 건물체적의 10% 증가는 기온을 0.26% 증가시켰다. 소공간스케일에서 실측한 춘천시의 여름철 기온과 토지피복 간의 상관성 역시, 기온은 식생체적, 녹지면적 등의 증가에 따라 감소하는 반면 하드스케이프 면적의 증가에 비례하여 상승하는 경향이었다. 식생체적 변수를 적용하여 가장 적합한 단순회귀모델을 도출한 결과, 소공간스케일의 여름철 기온은 서울시 AWS 지점의 단순회귀모델과 유사하게 식생체적을 10% 증가시킴에 따라 0.32%($0.08^{\circ}C$)씩 감소하였다. 본 연구에 근거하면, 여름철 기온저감을 지향하는 도시조경은 식생체적을 증가시키면서 동시에 건물체적을 감소시키는 전략이 요구된다. 서울시 AWS 지점의 기온변화에 기여하는 건물체적의 영향력은 식생체적보다 약 2배 큰 것으로 분석된다. 따라서, 자연지반에서는 다층식재를 추진하여 식생체적을 확충하되, 건물의 입체적 표면에 의한 대기 가열을 제어하기 위해 벽면과 옥상의 녹화로 식물의 차양 및 증발산 효과를 증진해야 한다.