• 제목/요약/키워드: automatic classification

검색결과 884건 처리시간 0.021초

Classification of Plants into Families based on Leaf Texture

  • TREY, Zacrada Francoise;GOORE, Bi Tra;BAGUI, K. Olivier;TIEBRE, Marie Solange
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.205-211
    • /
    • 2021
  • Plants are important for humanity. They intervene in several areas of human life: medicine, nutrition, cosmetics, decoration, etc. The large number of varieties of these plants requires an efficient solution to identify them for proper use. The ease of recognition of these plants undoubtedly depends on the classification of these species into family; however, finding the relevant characteristics to achieve better automatic classification is still a huge challenge for researchers in the field. In this paper, we have developed a new automatic plant classification technique based on artificial neural networks. Our model uses leaf texture characteristics as parameters for plant family identification. The results of our model gave a perfect classification of three plant families of the Ivorian flora, with a determination coefficient (R2) of 0.99; an error rate (RMSE) of 1.348e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and an accuracy (Accuracy) of 100%. The same technique was applied on Flavia: the international basis of plants and showed a perfect identification regression (R2) of 0.98, an error rate (RMSE) of 1.136e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and a trueness (Accuracy) of 100%. These results show that our technique is efficient and can guide the botanist to establish a model for many plants to avoid identification problems.

종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기 (Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network)

  • 이현영;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.441-448
    • /
    • 2019
  • 기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.

저수조 자동 분류를 이용한 효과적인 수질 오염 관리 (Effective Water Pollution Management using Reservoir Tank Automatic Classification)

  • 정경용;전인자
    • 한국콘텐츠학회논문지
    • /
    • 제9권8호
    • /
    • pp.1-8
    • /
    • 2009
  • IT 융합 기술의 발전에 따라 정부의 4대강 복원을 위한 마스터플랜이 구축되면서, 환경 친화적인 수질 오염 관리의 중요성이 부각되고 있다. 본 논문에서는 친환경 저수조의 수질 향상과 온라인 관리를 하기 위해서 저수조 자동 분류를 이용한 효과적인 수질 오염 관리를 제안하였다. 제안된 방법에서는 수질오염 평가의 7가지 요소들을 정의하였고 센서를 이용하여 수소이온농도(pH), 화학적 산소요구량(COD),부유 물질량(SS), 용존 산소량(DO), 대장균군수(MPN), 총인 (T-P), 총질소(T-N)에 따른 적합한 수질 오염 관리를 하였다. 저수조의 7가지의 수질 오염 요소간의 측정치를 평가하고 [1,9] 사이에 분포하도록 정규화하였다. 저수조 자동 분류를 이용한 수질 오염 관리 시스템의 성능 평가를 하기 위해 F-측정식을 이용하여 유용성을 검증하였다. 평가 결과, 기존 시스템에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였다.

화상분석을 이용한 소프트 센서의 설계와 산업응용사례 2. 인조대리석의 품질 자동 분류 (Soft Sensor Design Using Image Analysis and its Industrial Applications Part 2. Automatic Quality Classification of Engineered Stone Countertops)

  • 류준형;유준
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.483-489
    • /
    • 2010
  • 본 연구에서는 화상분석(image analysis)에 기반한 소프트 센서를 설계하고, 이를 색상-질감 특성을 가진 제품의 외관품질 자동분류에 적용하였다. 색상과 질감(texture)을 동시에 가진 화상을 분석하기 위해 다중해상도 다변량 화상분석(Multiresolutional Multivariate Image Analysis, MR-MIA) 기법을 이용하였으며, 자동 분류를 위한 감독 학습법(supervised learning)으로는 Fisher의 판별분석(Fisher's discriminant analysis)을 사용하였다. 잠재변수법의 하나인 Fisher의 판별분석을 사용하였기 때문에, 제품의 외관을 서로 다른 불연속적인 부류로의 분류할 수 있을 뿐 아니라, 연속적인 외관 변화를 일관적이고 정량적으로 추정함은 물론, 외관의 특성 해석 또한 가능하였다. 이 방법은 인조대리석 제조 공정에서 중간 및 최종 제품의 외관 품질을 자동으로 분류하는 데에 성공적으로 적용되었다.

교수-학습지원시스템에서 학습자 질의응답 자동분류를 위한 토픽 모델링 (Topic modeling for automatic classification of learner question and answer in teaching-learning support system)

  • 김경록;송혜진;문남미
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권2호
    • /
    • pp.339-346
    • /
    • 2017
  • 기사와 댓글, 질의응답과 같은 비정형 데이터에 기반한 텍스트 분석에 대한 관심이 증가하고 있다. 이는 사람들의 견해인 비정형 텍스트 데이터로부터 특징을 파악하고, 평가, 예측 및 추천에 활용할 수 있기 때문이다. TEL 분야에서도 MOOC 서비스의 확대로 교수학습지원시스템 기반 토론, 질의응답 서비스를 자동화하기 위한 관심이 증가하고 있다. 시스템에 축적된 질의응답 데이터를 기반으로 질의 토픽을 생성하고, 새로운 질의에 대해 토픽을 자동분류하기 위해서이다. 따라서 본 연구에서는 새로운 질의 토픽을 자동분류 할 수 있도록 LDA기법을 활용한 토픽 모델링을 제안하고자 한다. 이를 바탕으로 질의 토픽 사전을 생성하고 새로운 질의에 대해 토픽을 자동분류 할 수 있다. 일부 질의에서는 0.7 이상의 높은 자동 분류를 보였으며, 새로운 질의가 여러 토픽에 포함될수록 좀 더 좋은 자동분류 결과를 보였다.

기술과학 분야 학술문헌에 대한 학습집합 반자동 구축 및 자동 분류 통합 연구 (Semi-automatic Construction of Learning Set and Integration of Automatic Classification for Academic Literature in Technical Sciences)

  • 김선우;고건우;최원준;정희석;윤화묵;최성필
    • 정보관리학회지
    • /
    • 제35권4호
    • /
    • pp.141-164
    • /
    • 2018
  • 최근 학술문헌의 양이 급증하고, 융복합적인 연구가 활발히 이뤄지면서 연구자들은 선행 연구에 대한 동향 분석에 어려움을 겪고 있다. 이를 해결하기 위해 우선적으로 학술논문 단위의 분류 정보가 필요하지만 국내에는 이러한 정보가 제공되는 학술 데이터베이스가 존재하지 않는다. 이에 본 연구에서는 국내 학술문헌에 대해 다중 분류가 가능한 자동 분류 시스템을 제안한다. 먼저 한국어로 기술된 기술과학 분야의 학술문헌을 수집하고 K-Means 클러스터링 기법을 활용하여 DDC 600번 대의 중분류에 맞게 매핑하여 다중 분류가 가능한 학습집합을 구축하였다. 학습집합 구축 결과, 메타데이터가 존재하지 않는 값을 제외한 총 63,915건의 한국어 기술과학 분야의 자동 분류 학습집합이 구축되었다. 이를 활용하여 심층학습 기반의 학술문헌 자동 분류 엔진을 구현하고 학습하였다. 객관적인 검증을 위해 수작업 구축한 실험집합을 통한 실험 결과, 다중 분류에 대해 78.32%의 정확도와 72.45%의 F1 성능을 얻었다.

OpenSARShip DB를 이용한 선박식별 성능 분석 (Analysis of Ship Classification Performances Using OpenSARShip DB)

  • 이승재;채태병;김경태
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.801-810
    • /
    • 2018
  • 위성 SAR 영상을 이용한 선박 모니터링은 선박탐지, 선박변별, 선박식별의 세 단계로 분류할 수 있다. 이 중 선박탐지 및 변별에 대해서는 세계적으로 많은 연구가 이루어졌으나, 선박식별에 대해서는 소수의 연구들만이 존재한다. 따라서 향후 고성능의 선박 모니터링 시스템을 구축하기 위해서는 많은 선박식별 연구가 필요한 상황이다. 선박식별 연구를 수행하기 위해서는 먼저 여러 기종의 선박에 대한 위성 SAR 영상과 이에 대응하는 선박 기종 정보를 모두 획득하여 데이터베이스(database: DB)를 구축하는 것이 중요하다. 항공 SAR 영상을 이용한 표적식별의 경우, 지상표적에 대한 미국 moving and stationary target acquisition and recognition(MSTAR) DB를 이용하여 많은 연구들이 수행되었지만, SAR 위성을 이용한 선박식별의 경우, 아직까지 공개적으로 이용 가능한 DB가 없었다. 이에 최근 중국 Shanghai Key Laboratory에서는 유럽우주국(European Space Agency: ESA)에서 운용하는 Sentinel-1 영상과 자동인식시스템(automatic identification system: AIS)으로부터 획득한 선박정보를 결합하여 선박식별 연구용 DB인 OpenSARShip DB를 구축하였다. 이에 먼저 항공 SAR 영상을 이용한 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 위성 SAR DB에 적용하여 OpenSARShip DB의 활용성을 조사해볼 필요가 있다. 따라서 본 논문에서는 기존 항공 SAR 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 OpenSARShip DB에 적용하여 선박식별을 수행한 후, 그 성능을 분석하여 OpenSARShip DB의 활용성을 조사한다.

건축법규 자동검토를 위한 BIM정보의 분류체계 검토 및 프로세스에 관한 기초연구 (A Basic Study on Review the Classification System and the Process of BIM Information for an Automatic Review of Building Code)

  • 이창윤;심운준;안용선
    • 한국건설관리학회논문집
    • /
    • 제13권5호
    • /
    • pp.45-52
    • /
    • 2012
  • 최근 BIM이 건설 산업 전반에 도입이 되면서 활발히 적용되고 있다. 특히, 최근 BIM의 정보공유 활성화에 대한 많은 연구가 진행되고 있으며, 이는 앞으로 BIM이 나가야할 방향이며, 분명히 실현되어야 하는 부분이라 판단된다. 현재 시공단계에서 BIM의 활용 연구는 설계의 시공간섭 검토와 물량산출을 기반으로 하는 견적부분에서 활발하게 진행되고 있다. 하지만 아직 건축법규 검토에 대해서는 상대적으로 관심이 적다. BIM이 활성화됨에 따라 건축법규 검토 방법도 BIM의 정보를 이용하여 자동 검토되는 시스템이 갖추어져야 할 것이며, 해외의 경우, 이미 다양한 모델링 검토 소프트웨어를 이용해 연구개발하고 있다. 따라서 국내에서도 건축법규의 자동 검토를 위한 연구가 필요한 것으로 여겨지고 있다. 본 연구는 국내 건축법규 자동 검토 시스템 개발을 위한 기초적인 연구이다. BIM의 정보를 이용해 건축물 분야별 정보의 특성을 분석하였다. 분석된 특성을 토대로 관련 프로그램이나 검토체계를 구축하기 위한 분류체계 검토를 통하여 법규자동 검토를 위한 프로세스를 제안하고자 한다.

OPAC에서 자동분류 열람을 위한 계층 클러스터링 연구 (Hierarchic Document Clustering in OPAC)

  • 노정순
    • 정보관리학회지
    • /
    • 제21권1호
    • /
    • pp.93-117
    • /
    • 2004
  • 본 연구는 OPAC에서 계층 클러스터링을 응용하여 소장자료를 계층구조로 분류하여 열람하는데 사용될 수 있는 최적의 계층 클러스터링 모형을 찾기 위한 목적으로 수행되었다. 문헌정보학 분야 단행본과 학위논문으로 실험집단을 구축하여 다양한 색인기법(서명단어 자동색인과 통제어 통합색인)과 용어가중치 기법(절대빈도와 이진빈도), 유사도 계수(다이스, 자카드, 피어슨, 코싸인, 제곱 유클리드), 클러스터링 기법(집단간 평균연결, 집단내 평균연결, 완전연결)을 변수로 실험하였다. 연구결과 집단간 평균연결법과 제곱 유클리드 유사도를 제외하고 나머지 유사도 계수와 클러스터링 기법은 비교적 우수한 클러스터를 생성하였으나, 통제어 통합색인을 이진빈도로 가중치를 부여하여 완전연결법과 집단간 평균연결법으로 클러스터링 하였을 때 가장 좋은 클러스터가 생성되었다. 그러나 자카드 유사도 계수를 사용한 집단간 평균연결법이 십진구조와 더 유사하였다.

블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘 (A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel)

  • 최민환;남해운
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1406-1409
    • /
    • 2016
  • 본 논문에서는 송수신단 간 변조기법 및 채널 상태 값이 약속되지 않은 완벽한 블라인드 통신 상황에서 송신측의 변조방식을 알아내기 위해 성좌도 회전 및 확률밀도함수(probability density function : pdf)를 이용한 새로운 자율 변조 구분(Automatic modulation classification : AMC)기법과 경험적 신호 그룹화 알고리즘을 통해 채널 상태 값을 추정하는 방법을 제안한다. 평균제곱근 편차(Root mean square error : RMSE) 및 심볼 오류율(Symbol error rate : SER) 등의 모의실험을 통해 제안된 기법과 기존의 다른 기법간의 채널 상태와 변조 추정 능력을 비교 평가한다.