• Title/Summary/Keyword: automatic categorization

Search Result 84, Processing Time 0.016 seconds

Development of an Automatic Classification Model for Construction Site Photos with Semantic Analysis based on Korean Construction Specification (표준시방서 기반의 의미론적 분석을 반영한 건설 현장 사진 자동 분류 모델 개발)

  • Park, Min-Geon;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.58-67
    • /
    • 2024
  • In the era of the fourth industrial revolution, data plays a vital role in enhancing the productivity of industries. To advance digitalization in the construction industry, which suffers from a lack of available data, this study proposes a model that classifies construction site photos by work types. Unlike traditional image classification models that solely rely on visual data, the model in this study includes semantic analysis of construction work types. This is achieved by extracting the significance of relationships between objects and work types from the standard construction specification. These relationships are then used to enhance the classification process by correlating them with objects detected in photos. This model improves the interpretability and reliability of classification results, offering convenience to field operators in photo categorization tasks. Additionally, the model's practical utility has been validated through integration into a classification program. As a result, this study is expected to contribute to the digitalization of the construction industry.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

Decision of the Korean Speech Act using Feature Selection Method (자질 선택 기법을 이용한 한국어 화행 결정)

  • 김경선;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.278-284
    • /
    • 2003
  • Speech act is the speaker's intentions indicated through utterances. It is important for understanding natural language dialogues and generating responses. This paper proposes the method of two stage that increases the performance of the korean speech act decision. The first stage is to select features from the part of speech results in sentence and from the context that uses previous speech acts. We use x$^2$ statistics(CHI) for selecting features that have showed high performance in text categorization. The second stage is to determine speech act with selected features and Neural Network. The proposed method shows the possibility of automatic speech act decision using only POS results, makes good performance by using the higher informative features and speed up by decreasing the number of features. We tested the system using our proposed method in Korean dialogue corpus transcribed from recording in real fields, and this corpus consists of 10,285 utterances and 17 speech acts. We trained it with 8,349 utterances and have test it with 1,936 utterances, obtained the correct speech act for 1,709 utterances(88.3%). This result is about 8% higher accuracy than without selecting features.

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF