• 제목/요약/키워드: automatic categorization

검색결과 84건 처리시간 0.031초

문단 단위 가중치 함수와 문단 타입을 이용한 문서 범주화 (Automatic Text Categorization Using Passage-based Weight Function and Passage Type)

  • 주원균;김진숙;최기석
    • 정보처리학회논문지B
    • /
    • 제12B권6호
    • /
    • pp.703-714
    • /
    • 2005
  • 문서 범주화 분야에 대한 연구들은 전체 문서 단위에 한정되어 왔으나, 오늘날 대부분의 전문들이 주요 주제를을 표현하기 위해서 조직화 된 특정 구조로 기술되고 있어, 텍스트 범주화에 대한 새로운 인식이 필요하게 되었다. 이러한 구조는 부주제(Sub-topic)의 텍스트 블록이나 문단(Passage) 단위의 나열로서 표현되는데, 이러한 구조 문서에 대한 부주제 구조를 반영하기 위해서 문단 단위(Passage-based) 문서 범주화 모델을 제안한다. 제안한 모델에서는 문서를 문단들로 분리하여 각각의 문단에 범주(Category)를 할당하고, 각 문단의 범주를 전체 문서의 범주로 병합하는 방법을 사용한다. 전형적인 문서 범주화와 비교할 때, 두 가지 부가적인 절차가 필요한데, 문단 분리와 문단 병합이 그것이다. 로이터(Reuter)의 4가지 하위 집합과 수십에서 수백 KB에 이르는 전문 테스트 컬렉션(KISTl-Theses)을 이용하여 실험하였는데, 다양한 문단 타입들의 효과와 범주 병합 과정에서의 문단 위치의 중요성에 초점을 맞추었다 실험한 결과 산술적(Window) 문단이 모든 테스트 컬렉션에 대해서 가장 좋은 성능을 보였다. 또한 문단은 문서 안의 위치에 따라 주요 주제에 기여하는 바가 다른 것으로 나타났다.

디스크립터 자동 할당을 위한 저자키워드의 재분류에 관한 실험적 연구 (A Study on the Reclassification of Author Keywords for Automatic Assignment of Descriptors)

  • 김판준;이재윤
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.225-246
    • /
    • 2012
  • 본 연구는 국내 주요 학술 DB의 검색서비스에서 제공되고 있는 저자키워드(비통제키워드)의 재분류를 통하여 디스크립터(통제키워드)를 자동 할당할 수 있는 가능성을 모색하였다. 먼저 기계학습에 기반한 주요 분류기들의 특성을 비교하는 실험을 수행하여 재분류를 위한 최적 분류기와 파라미터를 선정하였다. 다음으로, 국내 독서 분야 학술지 논문들에 부여된 저자키워드를 학습한 결과에 따라 해당 논문들을 재분류함으로써 키워드를 추가로 할당하는 실험을 수행하였다. 또한 이러한 재분류 결과에 따라 새롭게 추가된 문헌들에 대하여 통제키워드인 디스크립터와 마찬가지로 동일 주제의 논문들을 모아주는 어휘통제 효과가 있는지를 살펴보았다. 그 결과, 저자키워드의 재분류를 통하여 디스크립터를 자동 할당하는 효과를 얻을 수 있음을 확인하였다.

딥 러닝을 이용한 버그 담당자 자동 배정 연구 (Study on Automatic Bug Triage using Deep Learning)

  • 이선로;김혜민;이찬근;이기성
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1156-1164
    • /
    • 2017
  • 기존의 버그 담당자 자동 배정 연구들은 대부분 기계학습 알고리즘을 기반으로 예측 시스템을 구축하는 방식이었다. 따라서, 고성능의 기계학습 모델을 적용하는 것이 담당자 자동 배정 시스템 성능의 핵심이 된다고 할 수 있으며 관련 연구에서는 높은 성능을 보이는 SVM, Naive Bayes 등의 기계학습 모델들이 주로 사용되고 있다. 본 논문에서는 기계학습 분야에서 최근 좋은 성능을 보이고 있는 딥 러닝을 버그 담당자 자동 배정에 적용하고 그 성능을 평가한다. 실험 결과, 딥 러닝 기반 Bug Triage 시스템이 활성 개발자 대상 실험에서 48%의 정확도를 달성했으며 이는 기존의 기계학습 대비 최대 69%향상된 결과이다.

자동문헌분류를 위한 대표색인어 추출에 관한 연구 (A Study on the Feature Selection for Automatic Document Categorization)

  • 황재영;이응봉
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2003년도 제10회 학술대회 논문집
    • /
    • pp.55-64
    • /
    • 2003
  • 인터넷 학술정보자원이 급증하고 있는 가운데 자동문헌분류에 대한 관심과 필요성도 늘어가고 있다. 자동문헌분류에 관한 실험은 전처리 단계인 대표색인어 추출과 추출된 대표색인어의 분류성능 평가 실험으로 구분 할 수 있는데, 본 연구에서는 우선 대표색인어 추출을 위해 다양한 대표색인어(자질) 추출 방법에 따른 색인어 성능평가 실험 및 최적의 대표색인어 개수 선정 실험을 수행하였다.

  • PDF

문서 자동 분류기의 구현을 위한 문서 학습 방법에 관한 연구 (A Study on the Learning Method of Documents for Implementation of Automated Documents Classificator)

  • 선복근;이인정;한광록
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1001-1004
    • /
    • 1999
  • We study on machine learning method for automatic document categorization using back propagation algorithm. Four categories are classified for the experiment and the system learns with 20 documents per a category by this method. As a result of the machine learning, we can find that a new document is automatically classified with a category according to the predefined ones.

  • PDF

K-NN과 객체 지향 시소러스를 이용한 웹 문서 자동 분류 (Automatic Document Categorization Using K-Nearest Neighbor Algorithm and Object-Oriented Thesaurus)

  • 방선이;양재동
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.145-147
    • /
    • 2001
  • 문서 자동 분류에는 통계적인 기법과 machine learning 기법의 맡은 알고리즘들이 이용되고 있다. 통계적인 기법 알고리즘을 이용한 문서 분류는 높은 성능을 보이지만 분류할 카테고리가 둘 이상인 경우가 빈번할 경우에는 정확률이 급격히 저하되는 단점이 있다. 본 논문에서는 K-NN알고리즘을 이용하여 일차적인 문서 분류를 수행한 후 특정 카테고리로 분류하기에 애매모호한 경우가 생길 경우 시소러스의 일반화 관계와 연관화 관계를 이용하여 모호성을 줄임으로써 문서 자동 분류의 성능을 높이기 위한 새 기법을 제안한다.

  • PDF

자동 판례분류를 위한 기계학습기법 (Machine Learning Technique for Automatic Precedent Categorization)

  • 장균탁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.574-576
    • /
    • 2007
  • 판례 자동분류 시스템은 일반적인 문서 자동분류 시스템과 기본적인 동작방법은 동일하다. 본 논문에서는 노동법에 관련된 판례를 대상으로 지지벡터기계(SVM), 단일 의사결정나무, 복수 의사결정나무, 신경망 기법 등을 사용하여 문서의 자동 분류 실험을 수행하고, 판례분류에 가장 적합한 기계학습기법이 무엇인지를 실험해 보았다. 실험 결과 복수 의사결정나무가 93%로 가장 높은 정확도를 나타내었다.

A One-Size-Fits-All Indexing Method Does Not Exist: Automatic Selection Based on Meta-Learning

  • Jimeno-Yepes, Antonio;Mork, James G.;Demner-Fushman, Dina;Aronson, Alan R.
    • Journal of Computing Science and Engineering
    • /
    • 제6권2호
    • /
    • pp.151-160
    • /
    • 2012
  • We present a methodology that automatically selects indexing algorithms for each heading in Medical Subject Headings (MeSH), National Library of Medicine's vocabulary for indexing MEDLINE. While manually comparing indexing methods is manageable with a limited number of MeSH headings, a large number of them make automation of this selection desirable. Results show that this process can be automated, based on previously indexed MEDLINE citations. We find that AdaBoostM1 is better suited to index a group of MeSH hedings named Check Tags, and helps improve the micro F-measure from 0.5385 to 0.7157, and the macro F-measure from 0.4123 to 0.5387 (both p < 0.01).

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구 (An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods)

  • 이재윤
    • 한국문헌정보학회지
    • /
    • 제39권2호
    • /
    • pp.123-146
    • /
    • 2005
  • 이 연구에서는 문서 자동분류에서 분류자질 선정과 가중치 할당을 위해서 일관된 전략을 채택하여 kNN 분류기의 성능을 향상시킬 수 있는 방안을 모색하였다. 문서 자동 분류에서 분류자질 선정 방식과 자질 가중치 할당 방식은 자동분류 알고리즘과 함께 분류성능을 좌우하는 중요한 요소이다. 기존 연구에서는 이 두 방식을 결정할 때 상반된 전략을 사용해왔다. 이 연구에서는 색인파일 저장공간과 실행시간에 따른 분류성능을 기준으로 분류자질 선정 결과를 평가해서 기존 연구와 다른 결과를 얻었다. 상호정보량과 같은 저빈도 자질 선호 기준이나 심지어는 역문헌빈도를 이용해서 분류 자질을 선정하는 것이 kNN 분류기의 분류 효과와 효율 면에서 바람직한 것으로 나타났다. 자질 선정기준으로 저빈도 자질 선호 척도를 자질 선정 및 자질 가중치 할당에 일관되게 이용한 결과 분류성능의 저하 없이 kNN 분류기의 처리 속도를 약 3배에서 5배정도 향상시킬 수 있었다.