• Title/Summary/Keyword: automated driving vehicle

Search Result 124, Processing Time 0.028 seconds

Study of Restraint System Computational Model and Occupant Behavior for Vehicle Occupant Protection (자동차 승객보호를 위한 안전장치 해석모델 및 승객거동 연구)

  • Han, Kyeonghee;Shin, Jaeho;Kim, Kyungjin;So, Young Myung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2021
  • Vehicle occupant postures are anticipated to vary more widely during automated driving and to become more significant in terms of the autonomous vehicle safety. Experimental and computational approaches are needed to investigate and evaluate occupant behaviors during automated driving in general. However the validity and effect of such occupant postures are unknown, thus it is necessary to examine occupant behaviors and injury countermeasures for various occupant postures. This study was focused on the development and evaluation of restraint system model for occupant behavior examinations in the first step according to autonomous vehicle occupant safety. The finite element models of dummy and restraint system were set up and simulation results showed overall model performance and safety tolerances of different reclined occupant postures during frontal impact loading.

A Study on User Satisfaction Evaluation of Acceleration-Based Automated Driving Patterns (가속도 기반 자율주행 패턴에 대한 이용자 만족도 평가 연구)

  • Sooncheon Hwang;Dongmin Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.284-298
    • /
    • 2023
  • With the rapid advances in automated driving technology, opportunities to experience automated driving directly or indirectly are being provided to the public. On the other hand, research on the preferred automated driving patterns from the user's perspective has not been conducted in Korea. This study used a driving simulator and an experimental vehicle capable of automated driving to evaluate the user satisfaction regarding longitudinal and lateral accelerations. Automated driving patterns were implemented in a virtual environment simulation using five values of longitudinal and lateral accelerations derived from driving experiments. Among these values, three were implemented through experimental vehicle-based automated driving to evaluate satisfaction and anxiety. The participants evaluated lateral acceleration more sensitively than longitudinal acceleration and showed higher levels of anxiety. Based on these results, the necessity of user-oriented evaluation research for automated driving patterns and the suitability of simulator-based evaluation methods were presented.

Human Driving Data Based Simulation Tool to Develop and Evaluate Automated Driving Systems' Lane Change Algorithm in Urban Congested Traffic (도심 정체 상황에서의 자율주행 차선 변경 알고리즘 개발 및 평가를 위한 실도로 데이터 기반 시뮬레이션 환경 개발)

  • Dabin Seo;Heungseok Chae;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This paper presents a simulation tool for developing and evaluating automated driving systems' lane change algorithm in urban congested traffic. The behavior of surrounding vehicles was modeled based on driver driving data measured in urban congested traffic. Surrounding vehicles are divided into aggressive vehicles and non-aggressive vehicles. The degree of aggressiveness is determined according to the lateral position to initiate interaction with the vehicle in the next lane. In addition, the desired velocity and desired time gap of each vehicle are all randomly assigned. The simulation was conducted by reflecting the cognitive limitations and control performance of the autonomous vehicle. It was possible to confirm the change in the lane change performance according to the variation of the lane change decision algorithm.

Toward Real-world Adoption of Autonomous Driving Vehicle on Public Roadways: Human-Centered Performance Evaluation with Safety Critical Scenarios (자율주행 차량의 실도로 주행을 위한 안전 시나리오 기반 인간중심 시스템 성능평가)

  • Yunyoung Kook;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.6-12
    • /
    • 2023
  • For the commercialization and standardization of autonomous vehicles, demand for rigorous safety criteria has been increased over the world. In Korea, the number of extraordinary service permission for automated vehicles has risen since Hyundai Motor Company got its initial license in March 2016. Nevertheless, licensing standards and evaluation factors are still insufficient for operating on public roadways. To assure driving safety, it is significant to verify whether or not the vehicle's decision is similar to human driving. This paper validates the safety of the autonomous vehicle by drawing scenario-based comparisons between manual driving and autonomous driving. In consideration of real traffic situations and safety priority, seven scenarios were chosen and classified into basic and advanced scenarios. All scenarios and safety factors are constructed based on existing ADAS requirements and investigated via a computer simulation and actual experiment. The input data was collected by an experimental vehicle test on the SNU FMTC test track located at Siheung. Then the offline simulation was conducted to verify the output was appropriate and comparable to the manual driving data.

The Effects of Age, Gender, and Situational Factors on Take-Over Performance in Automated Driving (연령, 성별 및 상황적 요인이 자율주행 제어권 전환 수행도에 미치는 영향)

  • Myoungouk, Park;Joonwoo, Son
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • This paper investigates the effects of age, gender, and situational factors on take-over performance in automated driving. The existing automated driving systems still consider a driver as a fallback-ready user who is receptive to take-over requests. Thus, we need to understand the impact of situations and human factors on take-over performance. 34 drivers drove on a simulated track, consisting of one baseline and four event scenarios. The data, including the brake reaction time and the standard deviation of lane position, and physiological data, including the heart rate and skin conductance, were collected. The analysis was performed using repeated-measures ANOVA. The results showed that there were significant age, gender, and situational differences in the takeover performance and mental workload. Findings from this study indicated that older drivers may face risks due to their degraded driving performance, and female drivers may have a negative experience on automated driving.

A Study on Human Factors Guidelines for Level 3 Automated Vehicles (레벨 3 자율주행차량의 인적요인 가이드라인 연구 동향)

  • Kim, H.S.;Kwon, O.C.;Lee, S.J.;Kim, J.S.;Kim, W.J.;Yoon, D.S.;Lee, I.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.24-36
    • /
    • 2020
  • To solve social problems such as traffic accidents caused by human driver factors and to guarantee the convenience of movement, research on the commercialization of automated vehicles is being actively conducted worldwide. In automated driving levels 2 and 3, the driver must be ready to drive at any time as the automated driving system sometimes requires manual driving by the driver. The purpose of this research is to analyze the trends in global automated vehicle guidelines and prepare guidelines for the characteristics of human factors necessary for the control rights transition system of automated vehicles. To this end, we reviewed at the guidelines for automated vehicles in the US, Germany, and Japan; ISO international standards; domestic automated vehicle standards; and the EU AdaptiVe project. In addition, a guideline is presented that can be referenced and applied by organizations related to automated vehicle manufacturing and operation. It was developed by utilizing the results of our studies on the human factors affecting the guideline of control rights transition. As national laws and regulations and continuous technology development for commercialization of automated vehicles are in progress, further research into and the revision of guidelines for safe automated vehicle production and use should be continued.

A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT (자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF

AVM Stop-line Detection based Longitudinal Position Correction Algorithm for Automated Driving on Urban Roads (AVM 정지선인지기반 도심환경 종방향 측위보정 알고리즘)

  • Kim, Jongho;Lee, Hyunsung;Yoo, Jinsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2020
  • This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.

A Study on Assessment Items and Considerations for Development of KNCAP of Automated Driving System (자율주행자동차 KNCAP(자동차안전도평가) 도입 시 평가항목과 고려사항에 관한 연구)

  • Woo, Hyungu;Lee, Gwang Goo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.102-110
    • /
    • 2021
  • As an alternative to solving safety, environments, and aging problems, ADS (Automated driving system) in the global automotive market is actively being developed as a new growth industry. In time for the appearance of ADS, relevant regulations and assessment programs must also be developed. For example, safety standards for the Level 3 automated driving system were promulgated in December 2019 by the Ministry of Land, Infrastructure and Transport of Korean government. However, assessment programs such as KNCAP for autonomous functions of ADS have not yet been introduced in Korea as well as globally. The autonomous driving functions of ADS at Level 3 or higher must be capable to recognize, judge and respond to objects and events in a wide variety of complex situations. In this paper, we examined and studied the complex situations, considerations and assessment items that ADS must respond to in the interest of safety for passengers, pedestrians and other road users. We hope this paper will be helpful to develop an execution program in the future.

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.