• Title/Summary/Keyword: automated calibration model

Search Result 14, Processing Time 0.02 seconds

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.

Measurement of Soil Deformation around the Tip of Model Pile by Close-Range Photogrammetry (근접 사진측량에 의한 모형말뚝 선단부 주변의 지반 변형 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2013
  • In this paper, we studied on measurement of soil deformation around the tip of model pile by close-range photogrammetry. The rigorous bundle adjustment method was utilized to monitor the soil deformation in the laboratory model pile-load test as function of incremental penetration of the pile. Control points were installed on the frame of the laboratory model box case and more than 150 target points were inserted inside the soil around the model pile and on the surface. Four overlapping images including three horizontal and one vertical image were acquired by a non-metric camera for each penetration step. The images were processed to automatically locate the control and target points in the images for the self-calibration and the bundle adjustment. During the bundle adjustment, the refraction index of the acrylic case of the laboratory model was accounted for accurate measurement. The experiment showed the proposed approach enabled the automated photogrammetric monitoring of soil deformation around the tip of model pile.

A Study on the Development of a Specialized Prototype End-Effector for RDSs(Robotic Drilling Systems) (RDS(Robotic Drilling System) 구축을 위한 전용 End-Effector Prototype 개발에 관한 연구)

  • Kim, Tae-Hwa;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.132-141
    • /
    • 2013
  • Robotic Drilling Systems(RDSs) set the standard for the factory automation systems in aerospace manufacturing. With the benefits of cost effective drilling and predictive maintenance, RDSs can provide greater flexibility in the manufacturing process. The system can be easily adopted to manage very complex and time-consuming processes, such as automated fastening hole drilling processes of large aircraft sections, where it would be difficult accomplished by workers following teaching or conventional guided methods. However, in order to build an RDS based on a CAD model, the precise calibration of the Tool Center Point(TCP) must be performed in order to define the relationships between the fastening-hole target and the End Effector(EEF). Based on the kinematics principle, the robot manipulator requires a new method to correct the 3D errors between the CAD model of the reference coordinate system and the actual measurements. The system can be called as a successful system if following conditions can be met; a. seamless integration of the industrial robot controller and the IO Level communication, b. performing pre-defined drilling procedures automatically. This study focuses on implementing a new technology called iGPS into the fastening-hole-drilling process, which is a critical process in aircraft manufacturing. The proposed system exhibits better than 100-micron 3D accuracy under the predefined working space. Based on the proposed EEF fastening-hole machining process, the corresponding processes and programs are developed, and its feasibility is studied.

Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning (기계학습을 이용한 벼 수발아율 예측)

  • Ban, Ho-Young;Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myong-Goo;Lee, Chung-Keun;Lee, Ji-U;Lee, Chae Young;Yun, Yeo-Tae;Han, Chae Min;Shin, Seo Ho;Lee, Seong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.