• Title/Summary/Keyword: autoinducer (AIs)

Search Result 3, Processing Time 0.015 seconds

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

The Analysis of Expression of Autoinducer Synthesis Genes Involved in Quorum Sensing among Catheter Associated Bacteria (요로감염에 관여하는 카테터 내 박테리아의 Quorum Sensing 관련 autoinducer 합성 유전자의 발현분석)

  • Lee, Mi-Hye;Seo, Pil-Soo;Lee, Ji-Youl;Peck, Kyong-Ran;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.277-285
    • /
    • 2006
  • The most biofilm forming bacteria in catheter, Esctherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were isolated and identified from a patient's catheter occuring catheter-associated urinary tract infection (CA-UTI). We examined mRNA expression and its quantification of AIs synthetic genes encoding signal substance of quorum sensing from each bacterial species in order to elucidated quorum sensing mechanism. Both pure cultures for each bacterial strains and a mixed cultures with three were grown for 24 hr and 30 days. Initial densities to be able to detect mRNA expression oil single strains culture were shown at $2.4{\times}10^5$ CFU/ml, $5.4{\times}10^6$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $6.9{\times}10^4$ CFU/ml of P. aeruginosa for rhlI and lasI. Also, in mixed culture of three, initial cell densities of mRNA expression were appear to at $7.3{\times}10^5$ CFU/ml, $1.6{\times}10^7$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $2.1{\times}10^5$ CFU/ml of P. aeruginosa for rhlI and lasI. Each AIs synthetic gene was expressed in initial cell density and the mRNA expression of the genes were detected continously during 30 days. And then, the quantification of mRNA expression level of ygaG, rhlI, last, and luxS which were related AIs synthesis was done each time point by real-time RT-PCR. Interestingly, the mRNA levels of ygaG, rhlI, lasI, and luxS from the mixed culture was higher than those from each single strain culture. In the case of E. coli ygaG, the amount of transcript from the mixed culture was at least 30 times for that from single culture. In the case of P. aeruginosa rhlI and lasI, the amount of transcript from the mixed culture was at least 40 times and 250 times for that from single strain culture. In the case of S. aureus luxS, the amount of transcript from the mixed culture was at least 5 times for that from single strain culture. And specially, the mRNA expression of rhlI and lasI of P. aeruginosa showed the highest efficency among four AIs synthetic genes.

Effects of Cell-free Culture Fluids for the Expression of Putative Acyltransferase in Corynebacterium glutamicum (코리네형 균주의 Acyltransferase 발현에 미치는 세균배양액의 효과)

  • Kim, Yong-Jae;Lee, Heung-Shick;Ha, Un-Hwan
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.207-211
    • /
    • 2012
  • Autoinduction is mediated by signaling molecules known as autoinducers (AIs) that are produced, released and detected by bacterium itself. We recently reported that Corynebacterium glutamicum possesses an autoinduction system which secretes autoinducers during the stationary-phase of growth, triggering the expression of acyltransferase gene. However, it is still not clear what may act as autoinducers for the autoinduction in C. glutamicum. In this study, we compared the inducing effects of cell-free culture fluids obtained from a number of microbes including Agrobacterium tumefaciens, Vibrio harveyi, and Escherichia coli. Fluids from A. tumefaciens did not increase the expression of acyltransferase, whereas fluids from V. harveyi BB120 ($AI-1^+$, $AI-2^+$) did. Interestingly, the expression was increased by the fluids obtained from the early exponential-phase culture of BB120. Furthermore, this induction was not observed by the fluids from autoinducer mutants of V. harveyi MM77 ($AI-1^-$, $AI-2^-$) and BB152 ($AI-1^-$, $AI-2^+$). Unlike the effect shown by BB152, fluids from E. coli ($AI-1^-$, $AI-2^+$) still induced the acyltransferase expression. Taken together, these results suggest that C. glutamicum autoinducers seem to be unidentified molecules which do not belong to AI-1 or AI-2.