• Title/Summary/Keyword: autohydrolysis

Search Result 14, Processing Time 0.043 seconds

Evaluation of fiberization of rice hull by autohydrolysis conditons (자기가수분해 조건에 따른 농산부산물 왕겨의 섬유화 특성 평가)

  • Lee, Young-Ju;Jung, Woong-Ki;Sung, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.95-100
    • /
    • 2011
  • In the present study, effects of autohydrolysis treatment on the properties of rice hull were investigated. Two temperature condition such as $160^{\circ}C$ and $180^{\circ}C$ and thee treatment time such as 15 min, 30 min and 45 min were applied for autohydrolysis treatment. The pH of extract after autohydrolysis treatment decreased as increasing of the temperature and the treatment time. The ash content and the lignin content of rice hull were not decreased by the autohydrolysis treatment. The structure of rice hull after autohydrolysis treatment became more weak, the better efficiency of the fiberization with PFI-Mill was shown for the autohydrolysis treated rice hull with the higher temperature and the longer treatment time.

Enzymatic saccharification of autohydrolyzed industrial hemp (Cannabis sativa L.) lignocellulosic biomass (자기가수분해 처리가 산업용 대마 목부 바이오매스의 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Lee, Soo-Min;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.74-76
    • /
    • 2008
  • Autohydrolysis at different temperature levels was applied as industrial hemp pretreatment technique for glucose generation. Main structural components removed by autohydrolysis was xylan, which is more sensitive in acidic hydrolysis condition than cellulose or lignin. Higher temperature reaction conditions promoted more biomass components (xylan) removal than lower temperature, which led to better respond to enzymatic saccharification of residual biomass after autohydrolysis. With $185^{\circ}C$ and 60 min, saccharification degree was 53.0% of cellulose in hemp woody core biomass.

  • PDF

Effect of Delignification Treatment after Autohydrolysis on Yields of Cellulosic Substrates, Lignin Contents, and Enzymatic Hydrolysis (목분(木粉)의 Autohydrolysis후(後) 탈리그닌처리(處理)가 섬유소기질(纖維素基質)의 수율(收率), 리그닌함량(含量)과 효소가수분해(酵素加水分解)에 미치는 영향(影響))

  • Park, Jong-Moon;Ahn, Won-Yung;Shin, Dong-So
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.19-30
    • /
    • 1984
  • This experiment was carried out to investigate the effects of autohydrolysis and extraction conditions on the separation of the chemical substances, the extractability of lignin by dioxane, and the yield of reducing sugars from cellulosic substrates by using a commercial cellulase derived from Trichoderma viride. Air-dried wood meals through 0.42mm (40 mesh) screen and retained on 0.25 mm (60 mesh) of Populus alba-glandulosa and Pinus koraiensis were autohydrolyzed with water at $180^{\circ}C$ for 30 and/or 60 minutes in a 6 liter stainless-steel digester with or without 2% 2-naphthol. The hydrothermally-treated wood meals were extracted the lignin with 100%, 90%, 75% and 50% dioxane solutions at $70^{\circ}C$ for 4 hours, respectively. The results obtained were as follows; 1) After autohydrolysis of Populus alba-glandulosa, the yield of wood meals decreased with lengthening the auto hydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. In case of Pinus koraiensis, the yield was not affected by 2%, 2-naphthol addition at the autohydrolysis in the digester. 2) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the yield of wood meals decreased with lengthening the autohydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. Extraction of 50% dioxane solution was the best solvent for the yield among the solutions of 100%, 90%. 75% and 50% dioxane. In case of Pinus koraiensis, the yield was not affected by 2% 2-naphthol addition and the solution of 90% dioxane was the poorest solvent for the yield. 3) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the Klason lignin content in cellulosic substrates for enzymatic hydrolysis decreased with lengthening the autohydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. Klason lignin content was the lowest after extraction by 90% or 75% dioxane solution. The content was also affected by interaction of the three factors-autohydrolysis time, 2% 2-naphthol addition and concentration of dioxane. In case of Pinus koraiensis, the Klason lignin content increased with 2% 2-naphthol addition but was not affected by the concentration of dioxane solution. 4) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the extractable Klason lignin content by extraction increased with lengthening the auto hydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. The extractable lignin content was the highest after extraction by 90% or 75% dioxane solution. In case of Pinus koraiensis, the extractable lignin content increased with 2% 2-naphthol addition. Extractions by 100%, 90% and 50% dioxane solutions were more effective for the extraction of Klason lignin than by 75% dioxane solution. 5) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the yield of reducing sugars increased with lengthening the autohydrolysis time from 30 minutes to 60 minutes but was not affected by 2% 2-naphthol addition and the concentration of dioxane. The yield of reducing sugars after enzymatic hydrolysis was slightly higher by extractions with 90%, 75% and 50% dioxane solutions than with 100% dioxane. In case of Pinus koraiensis, the yield of reducing sugars was not affected by 2% 2-naphthol addition but affected by the concentration of dioxane. The yield of reducing sugars was the highest in cellulosic substrates extracted by 100% dioxane solution.

  • PDF

Studies on the Production of Roughages from Hyun-aspen (Populus alba × P. glandulosa) by Chemical Treatments -Autohydrolysis- (화학적(化學的) 처리(處理)에 의한 현사시나무의 조사료화(粗飼料化) 연구(硏究)(I) -Autohydrolysis-)

  • Kang, Chin-Ha;Paik, Ki-Hyon;Wi, Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 1990
  • Roughage feeds were produced from Hyun-aspen (Populus alba $\times$ P. glandulosa) by autohydrolysis. The objectives of this work were to find proper conditions for the treatment of Hyun-aspen by analyzing the compositional change and digestibility and to determine the content of sugar and phenol contained in liquor extracted by digestion. The results of this work were as follows: 1. The proper condition for autohydrolysis of Hyun-aspen chips were $160^{\circ}C$ and 30 minutes in an autoclave. The yield of potential feed from original material and digestibility were 91.3% and 38.9% respectively 2. According to cooking conditions the sugar concentration of extracted solution and the recovery rate of sugar were 0.1~2.5%, 0.3~14.6% respectively. The phenol concentration of extracted solution and the recovery rate of phenol were 0.1~0.3, 0.5~1.8% respectively.

  • PDF

A Study on the Decomposition of DFP using Cu(II)-Chitosan Complex (Cu(II)-Chitosan Complex의 DFP 분해 반응 연구)

  • Kye, Young-Sik;Chung, Woo Yong;Kim, Dongwook;Park, Yangki;Song, Siuk;Jeong, Keunhong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.699-704
    • /
    • 2012
  • In this study, we have proposed a novel decomposition agent composed of Cu(II) and soluble chitosan for organophosphorus chemical agents. Compared to the autohydrolysis, the soluble Cu(II)-Chitosan complex hydrolyzed DFP more effectively. Results show that soluble Cu(II)-Chitosan complex enhances the hydrolysis of DFP in 4~6 folds compared to the autohydrolysis of DFP in buffer solution. This study provides the possibility of using this soluble Cu(II)-Chitosan complex as the environmental friendly decomposition agent which can substitute current DS-2 decomposition agent.

Preparation of Pure Cellulose Substrate from Low-Grade Woods by Autohydrolysis (저급목재의 자기가수분해 전처리에 의한 고순도 셀룰로오스 기질의 제조)

  • Cho, Nam-Seok;Kim, Byoung-Ro;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2002
  • This study was performed to produce the high reactive lignin zero substrates from autohydrolyzed wood resources. In chemical compositions of used raw-materials, there were significant differences between two species, Japanese larch (Larix leptolepis) and oak (Quercus mongolica) woods. Japanese larch contained 25 to 3.5 times higher amounts of extractives than oak wood, which is mainly derived from high content of arabinogalactan in Japanese larch wood. Oak wood has 5% lower lignin content and 3% higher holocellulose and pentosans than larch wood. Concerned to changes in wood components during autohydrolysis pretreatment at 22 kg/cm2 steaming pressure for 5~60 min, glucose content was constant during pretreatment, while hemicellulose and lignin were abruptly changed. Hemicellulose fraction was decreased significantly and lignin contents increased because of its condensation reaction with hemicellulose degradation products. The pH of hydrolyzates during pretreatment was decreased, reached upto pH 3 and since then leveled off. In the case of oak wood, same tendency was observed as in Japanese larch. Autohydrolysis followed by sodium chlorite and sulfite or bisulfite pretreatment was very effective in delignification of the substrates. In particular, two-stage delignification of autohydrolyzed woods with alkali and O2-alkali resulted in very low lignin content substrates, such as 0~0.2% lignin substrate.

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Analysis and Decrease of Cyanogenic Glucosides in Flaxseed (아마인에 함유된 시안배당체의 분석과 저감화)

  • Park, Eun-Ryong;Hong, Jin-Hwan;Lee, Dong-Ha;Han, Sang-Bae;Lee, Kang-Bong;Park, Jae-Seok;Chung, Hyung-Wook;Hong, Kyung-Hyun;Kim, Myung-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.875-879
    • /
    • 2005
  • Linustatin and neolinustatin in flaxseed are called cyanogenic glucosides which produce acetone, hydrogen cyanide (HCN) and sugar when hydrolyzed. The HCN is the chemical whose toxin is being issued in food safety. Linustatin and neolinustatin were found in flaxseed by 206.5 and 174.2 mg/100 g, respectively using a RI-HPLC and LC/MSn analysis of $80\%$ methanol extraction. Also, HCN (137.38 mg/kg) was found in flaxseed distillate by autohydrolysis and IC analysis. More than 85$\%$ of linustatin, neolinustatin and HCN were removed when flaxseed was heated for more than 2 hours in $200^{\circ}C$. Especially, HCN was decreased to $98\%$ by heating only 30 min in $200^{\circ}C$.

Characteristics of pre-extracted hemicelluloses from Korean mixed wood by hot water and alkali solution and its effect on handsheet properties (열수 및 알칼리 용액을 이용하여 국산 목재 칩으로부터 선추출한 헤미셀룰로오스의 특성과 이에 따른 수초지 물성 변화)

  • Seo, Dong-Il;Lee, Sang-Hoon;Sim, Kyu-Jeong;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.60-67
    • /
    • 2011
  • Hemicelluloses pre-extracted from Korean mixed wood chip were investigated as a wet-end additive. Hemicelluloses dissolved in hot water and alkali solution were isolated by ethyl alcohol precipitation from pre-extractives. They showed molecular weight of 9,000 ~ 27,000 g/mol as revealed by size exclusion chromatography. The reduction of molecular weight through hot water extraction was caused by autohydrolysis. Chemical composition of the hemicelluloses were analyzed with high-performance liquid chromatography and UV-Vis spectroscopy. As the surface charge of isolated hemicelluloses were negative, the adsorption of hemicelluloses onto softwood unbleached kraft pulp fiber was promoted by poly-DADMAC. The physical properties of handsheets increased as the molecular weight of hemicellulose increased. On the other hands, the optical property decreased with hemicellulose adsorption.