• Title/Summary/Keyword: autochthonous COD

Search Result 14, Processing Time 0.019 seconds

Reduction of Autochthonous Organics in Masan Bay using a Simple Box Model (마산만의 자생 유기물 저감을 위한 단순 박스모델의 적용)

  • Hong, Sok-Jin;Lee, Won-Chan;Yoon, Sang-Pil;Park, Sung-Eun;Cho, Yoon-Sik;Kwon, Jung-No;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.111-118
    • /
    • 2007
  • Simple box budgets models are useful tools to understand the phenomena of natural system and to provide an insight into the complex processes including physical, chemical and biological processes occurring in natural system. Budgets of fresh water, salt and nutrients were estimated in order to clarify the characteristics of seasonal material cycle in the Masan Bay. Outflow volume of freshwater into system was approximately $307.4\times10^3\sim1,210\times10^3\;m^3/day$. Inflow masses of DIP and DIN were approximately $410.8\sim795.7\;kg/day$ and $4081.4\sim6525.3\;kg/day$, respectively. DIN is expected to accumulate in the system. The removal of nutrients from bottom sediments will contribute to the reduction of 21.0% of COD concentration in the system.

  • PDF

Diagnosis of Water Environment and Assessment of Water Quality Restoration in Lake Shihwa (시화호의 수환경 진단과 수질회복 평가)

  • Kim, Dong-Seop;Go, Seok-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.551-559
    • /
    • 2000
  • In order to diagnose the water environment and assess the water quality restoration, long term trend of water environment has been surveyed at 3-R stations from 1994 to 1999 in Lake Shihwa. Annual mean values of $COD_{Mn}$, Chlorophyll a, total nitrogen, total phosphorus and Secchi depth are ranged in 5.2-15.1 mg/L, 7.3-14R.1 jlg/L, 1.50-4.84 mgN/L, 0.055-0.281 mgP/L and 0.5 -1.4 m, respectively, during the study periods. Carson's trophic state indeies were varied from mesotrophy in 1994 and 1995, hyper-eutrophy in 1996 and 1997, to meso eutrophy in 199R and 1999. After dike construction, water quality were rapidly deteriorated by allochthonous and autochthonous loading of high nutrients and organic carbon. Eutrophication phenomena were characterized by massive phytoplankton blooms and high concentration of COD. However, after onset of restoration program, lake water quality was rapidly restored to the level of just after sea-dike construction. The diversion of waste water inflowing from the Panwol and the Sihwa industrial districts which was started from March, 1997 has contributed to improve water quality in the surface layer. And the tidal mixing (sea water inflowing) through the continuous gate operation was the most effective measure to the whole lake restoration.ration.

  • PDF

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.