• Title/Summary/Keyword: auto focus

Search Result 141, Processing Time 0.43 seconds

Auto-focus Algorithm Using Variance of Difference (VoD) of Adjacent Pixels (인근 픽셀 차이 값의 분산(VOD)을 이용한 자동 초점 조절 알고리즘)

  • 이형근;노경완김충원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.935-938
    • /
    • 1998
  • In this paper, we propose a new auto focus algorithm using variance which estimate spread characteristic of image. In the proposed algorithm, the focus value is calculated via variance of difference between two adjacent pixels. This algorithm, we propose, show much more sharp focus curve than any other algorithms. It is shown experimentally that the proposed auto focus algorithm can be a efficient alternative to existing Tenengrad-based auto focusing algorithms.

  • PDF

A Study of Auto Focus Control Method for the Mobile Phone Camera (이동단말기 카메라 자동 초점 조절 방식에 관한 연구)

  • Kim, Gab-Yong;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1003-1006
    • /
    • 2005
  • Demand of Auto Focus for Camera module is increased very fast in these days and will be adapted to most of mobile phones in next few years instead of traditional method, fixed focus. To make auto focus function, 2 kinds of solutions, VCM(Voice Coil Motor) and Piezo linear motor are normally used. In this paper, VCM which commercially strong candidate for Auto focus mechanism was investigated to verify principles are match up to the actual operation. Auto focus algorithm is different between 1 chip and 2 chip solution. Normally 2 chip is more complicate than the other. To have best performance on this function, hysteresis and depth of field(DOF) table should be optimized.

  • PDF

Development of Compact Auto Focus Actuator for Camera Phone by Applying New Electromagnetic Configuration

  • Chung, Myung-Jin;Son, Sung-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2087-2093
    • /
    • 2006
  • In this paper, auto focus actuator, which is used to move a lens module in the mobile phone having a camera module, is developed. Camera module containing auto focus actuator requires to minimize total size because of characteristics of the application area such as mobile phone, digital camera, and personal digital assistant. There are stepping motor, voice coil motor, and piezoelectric motor as auto focus actuator. In this paper, voice coil motor having new electromagnetic configuration is proposed. And actuator using proposed voice coil motor is developed by optimal design method using magnetic circuit analysis. The sectional area of the developed actuator is reduced to 32.4% compared with actuator using general electromagnetic configuration. From the performance test, the developed actuator has moving stroke of 0.64 mm for 2.1 volt, hysteresis of 40 $\mu$m, full stroke current of 54 mA, and unit step motion of 3 $\mu$m.

A Study on a New Auto-Focusing Algorthem for Digital Cameras (디지털 카메라를 위한 새로운 자동초점조절 알고리즘의 연구)

  • Shin, Seung-Hyun;Park, Jung-Ho;Kim, Kun-Sop;Cho, Il-Jun;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.447-453
    • /
    • 2001
  • In this paper, a new auto-focusing algorithm for digital cameras is proposed. One of the primary concerns of digital image processing is to increase image quality, and the most important factor for degrading the images is the blurring effect due to inexact focusing. The blurring effect occurs when the focusing lens is located on an unsuitable position. Therefore, focusing on an object should be proceeded before acquiring images. The proposed auto-focusing algorithm is MMDT(min-max difference threshold), and the performance of the proposed algorithm is evaluated by the use of the focus curve. It is shown that the proposed algorithm is superior to other previous auto-focusing algorithms in both the focus shape and computation time aspects. Especially, the improvement of the focus curve shape in both monotonousness and slope indicates that focusing can be done rapidly in comparison with other previous proposed algorithms.

  • PDF

An Auto-Focusing Method for CCM Test Handlers (소형 카메라 모듈용 테스트 핸들러의 자동 초점 조절 방법)

  • Yoon Ree-Sang;Park Tae-Ryoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2006
  • This paper proposes an auto-focusing method for production of compact camera module (CCM). The CCM test handlers are mainly used in the final CCM production stage to test and adjust the lens focus of CCMs. To improve the productivity of CCM test handlers, we propose the auto-focusing method adjusting the lens focus efficiently. The max-min-difference (MMD) method is newly developed to compute the focus value efficiently, and two-stage searching method is also developed to find the best focus position quickly. Experimental results are presented to verify the usefulness of proposed method.

Auto-focus Control by Chromatic Filtering in Laser Welding

  • Kim, Cheol-Jung;Baik, Sung-Hoon;Kim, Min-Suk;Chung, Chin-Man;Kim, Kwang-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 2000
  • Optical monitoring using the chromatic aberration of focusing optics is applied to auto-focus control in laser welding. The spectral transmittance of thermal radiation from a weld pool through an aperture depends on the wavelength of the spectral band and on the distance of the weld pool from the focusing optics. Its dependence has been used to monitor the focus shift in laser welding by measuring the spectral band signals filtered by the aperture. The difference between pulsed and continuous laser welding is analyzed. Furthermore, the dependence of the focus shift monitoring on the weld pool size variation is optimized to monitor the focus shift independently from the laser power change at the weld pool. The performance of the auto-focus control with chromatic filtering is presented for pulsed laser welding.

Design and Implementation of Auto-Focusing, Auto-Exposure and Auto-White balance Video Camera System (자동 초점 자동 노출 및 자동 화이트 밸런스 비디오 카메라의 설계 및 구현)

  • 김병수;이준석;정유영;고성제
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.17-20
    • /
    • 2001
  • This paper has been studied a vedio camera system with AF (auto-focus), AE (auto exposure), AWB(auto-whitebalance). And then this paper has designed an advanced method to improve AF, AE and AWB video camera system

  • PDF

A Study on the Image Based Auto-focus Method Considering Jittering of Airborne EO/IR (항공탑재 EO/IR의 영상떨림을 고려한 영상기반 자동 초점조절 기법 연구)

  • Kang, Myung-Ho;Kim, Sung-Jae;Koh, Yeong Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • In this paper, we propose methods to improve image-based auto-focus that can compensate for drawbacks of traditional auto-focus control. When adjusting the focus, there is a problem that the focus window cannot be set to the same position if the camera's LOS is not directed at the same location and flow or shake. To address this issue, we applied image tracking techniques to improve optimal focus localization accuracy. And also, although the same focus value should be calculated at the same focus step, but different values can be calculated by camera's fine shaking or image disturbance due to atmospheric scattering. To tackle this problem a SAFS (Stable Adjacency Frame Selection) has been proposed. As a result of this study, our proposed methodology shows more accurate than traditional methods in terms of finding best focus position.

A Study of Edge Detection for Auto Focus of Infrared Camera

  • Park, Hee-Duk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • In this paper, we propose an edge detection algorithm for auto focus of infrared camera. We designed and implemented the edge detection of infrared image by using a spatial filter on FPGA. The infrared camera should be designed to minimize the image processing time and usage of hardware resource because these days surveillance systems should have the fast response and be low size, weight and power. we applied the $3{\times}3$ mask filter which has an advantage of minimizing the usage of memory and the propagation delay to process filtering. When we applied Laplacian filter to extract contour data from an image, not only edge components but also noise components of the image were extracted by the filter. These noise components make it difficult to determine the focus state. Also a bad pixel of infrared detector causes a problem in detecting the edge components. So we propose an adaptive edge detection filter that is a method to extract only edge components except noise components of an image by analyzing a variance of pixel data in $3{\times}3$ memory area. And we can detect the bad pixel and replace it with neighboring normal pixel value when we store a pixel in $3{\times}3$ memory area for filtering calculation. The experimental result proves that the proposed method is effective to implement the edge detection for auto focus in infrared camera.