• Title/Summary/Keyword: auto control

Search Result 1,182, Processing Time 0.029 seconds

Comparison of CH4 Emission between Auto Chamber and Manual Chamber in the Rice Paddy (벼논에서 자동 챔버와 수동 챔버를 이용한 CH4 배출량 비교)

  • Jeong, Hyun Cheol;Choi, Eun Jung;Lee, Jong Sik;Kim, Gun Yeob;Lee, Sun Il
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.377-384
    • /
    • 2018
  • The chamber method is widely used for measuring methane emission from paddy rice fields. The closed static chamber has advantages of easy installation and removal in the field and low manufacturing cost. However, the manual chamber method requires a lot of labor and has a limited sampling time and frequency. To overcome the disadvantages of the manual chamber, the auto-chamber system is used for measuring methane emission. We compared the differences in methane flux between the auto-chamber and manual chamber. To investigate methane emissions by the two methods, a chamber was installed for each of the following treatments : control without rice straw (NA), spring plowing after autumn rice straw application (SPRA) and autumn plowing after autumn rice straw application (APRA). The total methane emission was lowest in the control and highest in APRA with both methods. There was no significant difference in total methane emission between the methods, but dynamic fluctuation in methane with temperature change was accurately measured in the auto-chamber. Measuring methane emission with an auto-chamber system is expected to reduce uncertainty and increase accuracy, accompanied by labor reduction.

Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle (자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발)

  • Lee, Hyewon;Song, Taejun;Yoon, Youngmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

Suggestion and Implementation of Improved Control Point for Remote Control Home-Network based on the UPnP (UPnP 기반의 홈-네트워크 원격제어를 위한 개선된 Control Point의 제안 및 구현)

  • Jeong, Jin-Gyu;Jin, Seon-Il;An, Gwang-Hyeok;Yu, Yeong-Dong;Hong, Seok-Gyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.769-772
    • /
    • 2003
  • Middleware enables different networking devices and protocols to inter-operate in ubiquitous home network environments. The UPnP(Universal Plug and Play) middleware, which runs on a PC and is based on the IPv4 protocol, has attracted much interest in the field of home network research since it has versatility. The UPnP, however, cannot be easily accessed via the public Internet since the UPnP devices that provide services and the Control Points that control the devices are configured with non-routable local private or Auto IP networks. The critical question is how to access UPnP network via the public Internet. The purpose of this study is to deal with the non-routability problem in local private and Auto IP networks by improving the conventional Control Point used in UPnP middleware-based home networks. For this purpose, this paper proposes an improved Control Point for accessing and controlling the home network from remote sites via the public Internet, by adding a web server to the conventional Control Point. The improved Control Point is implemented in an embedded GNU/Linux system running on an ARM9 platform.

  • PDF

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.

Propose, Design and Control of a New Actuator Using MR Fluid (MR 유체를 이용한 새로운 액추에이터의 제안, 설계 및 제어)

  • Kim J.S.;Ahn K.K.;Kha N.B.;Ahn Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.111-112
    • /
    • 2006
  • A new MR cylinder with built-in valves using Magneto - Rheological fluid (MR valve) is proposed for fluid power control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. This MR cylinder, which is composed of cylinder with small clearance and piston with electromagnet, has the characteristics of simple, compact and reliable structure. This paper presents a method to control the pressure of MR cylinder by using Generalized Predictive Control (GPC) algorithm. The differential pressure is controlled by applying magnetic field intensity to MR fluid. The use of GPC controller is to generate a control sequence by minimizing a cost function in such a way that the future system output is driven close to reference over finite prediction horizons. Experimental results from real time control using GPC method compared with conventional PID control method are also shown in this paper.

  • PDF

Development of rapid control prototyping for a PMSM drive system using DSPs and PLECS (DSP 및 PLECS를 활용한 PMSM 구동시스템용 고속 제어 시제품개발 기법 개발)

  • Lee, Jooyoung;Choi, Sung-Min;Kim, Sehwan;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • This paper presents implementation of rapid control prototype (RCP) for permanent magnet synchronous machines (PMSMs) using a digital signal processor (DSP) and the PLECS software. By utilization of auto code generation function in the PLECS, a current vector control algorithm for a PMSM drive system using a DSP as a control processor can be developed more efficiently. In this paper, a background of a model based design (MBD) and real time control are reviewed. Also, commercial RCP products compatible with DSP boards are introduced. At the end of the paper, experimental implementation of RCP for a PMSM drive is presented.

퍼지 논리를 이용한 슬라이딩 모드 제어기의 인자 자동 튜닝

  • Ryu, Se-Hee;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.973-979
    • /
    • 2001
  • Sliding mode control guarantees robustness in the presence of modeling uncertainties and external disturbances. However, this can be obtained at the cost of high control activity that may lead to chattering As one way to alleviate this problem a boundary layer around sliding surface is typically used. In this case the selection of controller gain, control ban width and boundary layer thickness is a crucial problem for the trade-off between tracking error and chattering. The parameter tuning is usually done by trail-and-error in practice causing significant effort and time. An auto tuning method based on fuzzy rules is proposed in the paper in this method tracking error and chattering are monitored by performance indices and the controller tunes the design parameters intelligently in order to compromise both indices. To demonstrate the efficiency of the propose method a mass-spring translation system and a roboic control system are simulated and tested It is shown that the proposed algorithm is effective to facilitae the parameter tuning for sliding mode controllers.

  • PDF

A Fuzzy Search Method for Auto Focusing of CCM Test Handlers (CCM 테스트 핸들러의 자동초점조절을 위한 퍼지탐색 방법)

  • Kwon, Hyuk-Joong;Yoon, Hee-Sang;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1112-1118
    • /
    • 2007
  • We propose a new-focusing method for test handlers of compact camera module (CCM), The MMD (max-min difference) method is applied to calculate the focus value quickly considering the noisy output of CCM. Also, the fuzzy search method is applied to find the maximum focus value effectively. We design a fuzzy processor to control the lens position by focus values and brightness values, which improves the focusing performance in the sense of speed and processor memory. The proposed method is implemented by computer program and installed at the CCM test handler machines. The simulation results are presented to verify the usefulness of the proposed method.

The Study of Influence Factor of Head Restraints on the Whiplash by using DFSS (DFSS 기법을 이용한 후방 추돌 시 경부 상해 감소를 위한 머리지지대 인자의 영향성 연구)

  • Oh, Hyungjoon;Seo, Sangjin;Yoo, Hyukjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • Whiplash is the most frequent injury among occupants in low speed rear-end car collision. The aim of this paper is to analyze thecorrelation between influence parameters of head restraints and whiplash injury criteria.In this paper, DFSS (Design for Six Sigma) method is used for optimum design of head restrains. Four control factors of head restraints have selected by function matrix method. The effects of the control factors have been experimentally evaluated by using a sled pulse from 16km/h relative velocity which is suggested by KNCAP (Korean New Car Assessment Program). In order to reduce the noise factors of dynamic tests, whiplash tests were repeated twice. By using DFSS, the correlation between control factors and injury criteria has been comprehended.