• Title/Summary/Keyword: aureus (MRSA)

Search Result 365, Processing Time 0.064 seconds

Comparison Between Antimicrobial Susceptibility Test and mecA PCR Method for Reading of Methicillin-Resistant Staphylococcus aureus (메티실린 내성 황색포도알균 판독에 있어 항균제 감수성 검사와 mecA PCR법의 비교)

  • Kim, Su-Jung
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.381-385
    • /
    • 2011
  • Methicillin-resistant Staphylococcus aureus (MRSA) is one of major pathogen causing hospital infection and several diseases such as purulent infection, bacteremia. The isolation ratio of MRSA is gradually increased up to 80% in the hospital, which makes a limitation for treatment of antibiotics because the isolated MRSA show resistance to methicillin as well as other antibiotics. This study proposes that mecA detecting methods which are not commonly used because of cost in the hospital is a more accurate method than Susceptibility Testing to detect a MRSA. We compared Staphylococcus aureus ATCC 29213 as a negative control and 20 MRSA strains isolated from patients by these two methods. We amplified mecA gene by polymerase chain reaction (PCR) and confirmed the PCR products by sequencing. All of the MRSA showed oxacillin and cefoxitin resistance whereas 85% (16/19) of the strains had mecA wildtype. These results suggest that some of the MRSA are mecA mutants therefore mecA genotyping reinforces the MRSA detection by antibiotic susceptibility test.

Antibiotic Resistance Patterns of Staphylococcus aureus Isolated from the Specimen of University Students in Busan in 2004 (2004년 부산시내 일부 대학생의 검체에서 분리된 황색포도상구균의 항생제 내성 양상)

  • Kim, Tae-Un;Kim, Yun-Tae;Kwon, Heon-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.155-163
    • /
    • 2005
  • The purpose of this study is to investigate the carrier rate of S. aureus in the community, antibiotic susceptibility patterns of the organism, detection of MRSA and mecA gene in MRSA. Identification and antibiotic resistance patterns of S. aureus and MRSA were done by MicroScan Panels. MRSA strain was confirmed by disk diffusion method using oxacillin disk. The mecA gene in MRSA was detected by PCR. Eighty-four strains (27.4%) of S. aureus were isolated from the nasal specimens of 307 university students in Busan in 2004. Sixty-eight strains (81.9%) of 83 S. aureus were resistant to penicllin, 16 strains(19.3%) to erythromycin, 15 strains (18.1%) to gentamicin, 12 strains (14.5%) to tetracycline, 6 strains (7.2%) to chloramphenicol, 3 strains (3.6%) to ofloxacin, 2 strains (2.4%) to cefepime, clindamycin, imipenem, meropenem, norfloxacin, respectively. One strain (1.2%) was resistant to ciprofloxacin, cefazolin, cefotaxime, cefuroxime, and oxacillin. And all the strains (100%) of 84 S. aureus were susceptible to amoxicilin/K clavulanate, ticarcillin/K clavulanate, trimethoprim/sulfamethoxazole, rifampin, syncroid, teicoplanin, and vancomycin. One strain of 84 S. aureus isolates was methicillin-resistant Staphylococcus aureus (MRSA). The mecA gene was detected from the MRSA strain.

  • PDF

Rapid Detection of Methicillin Resistant Staphylococcus aureus Based on Surface Enhanced Raman Scattering

  • Han, Dae Jong;Kim, Hyuncheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.4
    • /
    • pp.136-139
    • /
    • 2014
  • Methicillin-resistant Staphylococcus aureus (MRSA) is one of the severe nosocomial infectious agents. The traditional diagnostic methods including biochemical test, antibiotic susceptibility test and PCR amplification are time consuming and require much work. The Surface enhanced Raman spectroscopy (SERS) biosensor is a rapid and powerful tool for analyzing the chemical composition within a single living cell. To identify the biochemical and genetic characterization of clinical MRSA, all isolates from patients were performed with VITEK2 gram positive (GP) bacterial identification and Antibiotic Susceptibility Testing (AST). Virulence genes of MRSA also were identified by DNA based PCR using specific primers. All isolates, which were placed on a gold coated nanochip, were analyzed by a confocal Raman microscopy system. All isolates were identified as S. aureus by biochemical tests. MRSA, which exhibited antibiotic resistance, demonstrated to be positive gene expression of both femA and mecA. Furthermore, Raman shift of S. aureus and MRSA (n=20) was perfectly distinguished by a confocal Raman microscopy system. This novel technique explained that a SERS based confocal Raman microscopy system can selectively isolate MRSA from non-MRSA. The study recommends the SERS technique as a rapid and sensitive method to detect antibiotic resistant S. aureus in a single cell level.

Prevalence and Characteristics of Antimicrobial-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Retail Meat in Korea

  • Kim, Yong Hoon;Kim, Han Sol;Kim, Seokhwan;Kim, Migyeong;Kwak, Hyo Sun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.758-771
    • /
    • 2020
  • This study was to investigate the prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from 4,264 retail meat samples including beef, pork, and chicken in Korea between 2013 and 2018. A broth microdilution antimicrobial susceptibility testing was performed for S. aureus. Molecular typing by multilocus sequence typing (MLST), spa typing, and pulsed-field gel electrophoresis (PFGE), was performed on mecA-positive S. aureus strain. S. aureus was isolated at a rate of 18.2% (777/4,264), of which MRSA comprised 0.7% (29 strains). MLST analysis showed that 11 out of the 29 MRSA isolates were predominantly sequence type (ST) 398 (37.9%). In addition, ST72, ST692, ST188, ST9, and ST630 were identified in the MRSA isolates. The spa typing results were classified into 11 types and showed a high correlation with MLST. The antimicrobial resistance assays revealed that MRSA showed 100% resistance to cefoxitin and penicillin. In addition, resistance to tetracycline (62.1%), clindamycin (55.2%), and erythromycin (55.2%) was relatively high; 27 of the 29 MRSA isolates exhibited multidrug resistance. PFGE analysis of the 18 strains excluding the 11 ST398 strains exhibited a maximum of 100% homology and a minimum of 64.0% homology. Among these, three pairs of isolates showed 100% homology in PFGE; these results were consistent with the MLST and spa typing results. Identification of MRSA at the final consumption stage has potential risks, suggesting that continuous monitoring of retail meat products is required.

Occurrence and Characteristics of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolated from the Beef Production Chain in Korea

  • Lee, Haeng Ho;Lee, Gi Yong;Eom, Hong Sik;Yang, Soo-Jin
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.401-414
    • /
    • 2020
  • The emergence and persistence of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in livestock animals have been reported as a potential risk factor for transmission to humans. In this study, we investigated the nationwide prevalence and characteristics of MRSA and MSSA in the Korean beef production system, including retail markets, slaughterhouses, and cattle farms. From a total of 1,285 samples, only 5 MRSA strains were isolated: from a farmer (1 ST72 MRSA), a carcass sample from a slaughterhouse (1 ST72 MRSA), and beef cattle (3 ST5 MRSA). In addition, 11 MSSA strains were isolated from beef cattle (n=3), humans (1 farmer, 1 slaughterhouse worker, and 4 retail market workers), and carcass samples (n=1) and slaughterhouse environment (n=1). Although the prevalence of MRSA and MSSA in beef cattle was much lower than that reported in pigs, 5/5 MRSA and 2/11 MSSA strains displayed multiple drug resistance (MDR) phenotypes. Unlike the swine-associated MRSA, no correlation was found between tetracycline/zinc resistance and MDR phenotype. However, MRSA strains had an identical set of staphylococcal enterotoxins and exhibited enhanced levels of resistance to antimicrobial peptides (PMAP-36 and LL-37) compared to the MSSA strains. In conclusion, continued and systemic surveillance of livestock, meat products, and humans in close contact with livestock/meat products is necessary to prevent the transmission of MRSA and MSSA to humans.

Effect of Rosmarinus officinalis L. Fractions on Antimicrobial Activity against Methicillin-resistant Staphylococcus aureus (MRSA) and Resistant Genes Regulation (로즈마리(Rosmarinus officinalis L.) 추출물의 항생제 내성균주(MRSA)에 대한 항균활성 및 내성 유전자 조절 효과)

  • Choi, Jun-Hyeok;Yu, Mi-Hee;Hwang, Eun-Young;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.541-547
    • /
    • 2009
  • This study was performed to evaluate antimicrobial activity of methanol extract from Rosmarinus officinalis L. and their fractions on methicillin-resistant Staphylococcus aureus (MRSA) and resistant gene regulation. The methanol extract of Rosmarinus officinalis L. and their hexane fractions showed the strongest antimicrobial activity against S. aureus and MRSA. To observe the morphological change of MRSA according to the hexane fraction $80{\mu}g$/mL treatment, scanning electron microscope (SEM) of MRSA were measured. The results from SEM showed decreased number of bacteria, lysis and damaged cell wall. Expressions of MecA and penicillinase were substantially decreased in a dose-dependent manner on MRSA that had been treated with methanol extract of Rosmarinus officinalis L. and their hexane fractions.

Activity of Anti-Methicillin Resistant Staphylococcus aureus Compound Derived Marine Actinomycetes and Its Synergistic Effect (해양 방선균 유래 항 Methicillin Resistant Staphylococcus aureus 물질의 활성 및 상승 효과)

  • Seong-Yun, Jeong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • We isolated marine actinomycetes, strain D-5 which produces anti-methicillin resistant Staphylococcus aureus (anti-MRSA) compound. Streptomyces sp. D-5 relatively grew well in the 20~25℃, pH 8.0, and NaCl 3.0%. The ethyl acetate extract of D-5 culture was separated by C18 ODS open column and reverse phase HPLC to yield anti-MRSA compound. The molecular weight of this compound was determined to be 898 by a Liquid chromatograph-mass spectrometer (LC-MS). Compared with penicillin G, this compound showed significant anti-MRSA activity. It also exhibited an inhibition zone of 26 mm at a concentration of 64 ㎍/disk and an inhibition zone of 16 mm at a concentration of 16 ㎍/disk against the MRSA KCCM 40511. Furthermore, the co-treatment of HPLC peak 5 compound and vancomycin caused a more rapid decrease in MRSA cells than each compound alone. It showed 86.8% growth inhibition activity within 12 hours at a low concentration of 50 ㎍/mL during co-treatment, and 97.1% growth in-hibition activity within 48 hours against MRSA KCCM 40511. Taken together, our results suggest that Streptomyces sp. D-5 and its anti-MRSA compound could be employed as a potent agent in MRSA infection.

Isolation Rate of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal cavity inferior regions and Cellular phones

  • Kim, Chung Hwan;Lee, Jun Young;Kim, Mi Kyeong;Kim, Sung Hwan;Park, Geun Young;Bae, So Yeon;Seo, Myeong Jin;Go, In Hyeog
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.118-123
    • /
    • 2012
  • Nosocomial infection and community-acquired infection with Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has become a strong concern in human body sites and related effects. The aim of this study is investigate the isolation rate of MRSA from nasal cavity inferior regions and cellular phones to assess the risk factor of nosocomial infection and community-acquired infection. 34.7% and 37.2% isolates were MRSA from the nasal cavity inferior regions and cellular phones according to a Mannitol salt agar (added oxacillin $6{\mu}g/mL$) culture and PCR according to S. aureus specific 16S rRNA and mecA primers. Thus, the distribution of S. aureus and the isolation rate of MRSA represent a very high risk factor regards nosocomial infection and community-acquired infection.

  • PDF

Antimicrobial Effect of Medicinal Plants against Methicillin-Resistant Staphylococcus aureus (MRSA) (약용식물의 항생제 내성균주에 대한 항균활성)

  • Ji, Young-Ju;Lee, Ji-Won;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.412-419
    • /
    • 2007
  • In the present study, we investigated antimicrobial activity of the medicinal plants against various strains of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Among the tested, the plants extracts of Asiasarum heterotropoides var. mandshuricum, Coptidis rhizoma, Reynoutria elliptica Migo., Solidago virga-aurea var. gigantea Miq.seed exhibited significant antimicrobial activities against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923. The methanol extract of Asiasarum heterotropoides var. mandshuricum showed strong antimicrobial activity against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923 at the 5 mg/disc. A synergistic effect was found in combined extracts of Asiasarum heterotropoides var. mandshuricum and Coptidis rhizoma as compared to each extracts alone. The result suggests that medicinal plant extracts can be used as an effective natural antimicrobial agent in food.

Antibacterial Activity of the Phaeophyta Ecklonia stolonifera on Methicillin-resistant Staphylococcus aureus

  • Eom, Sung-Hwan;Kang, Min-Seung;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In an effort to discover an alternative therapeutic agent against methicillin-resistant Staphylococcus aureus (MRSA), several medicinal plants and seaweeds were evaluated for its antibacterial activity against MRSA. A methanolic extract of the Phaeophyta Ecklonia stolonifera exhibited significant antibacterial activity against MRSA. To perform more detailed investigation on antibacterial activity, the methanol extract of E. stolonifera was further fractionated with organic solvents such as hexane, dimethylchloride, ethyl acetate, and n-butanol. Among them, the hexane fraction showed the strongest antibacterial activity against MRSA strains with MIC from 500 to $600 {\mu}g/mL$. The fraction also exhibited a bactericidal activity against MRSA, indicating that E. stolonifera contains a bactericidal substance against MRSA.