• Title/Summary/Keyword: auger recombination

Search Result 17, Processing Time 0.03 seconds

The analysis of the characteristics of the power BJT using numerical analysis method (수치해석을 이용한 전력 BJT의 정특성 분석)

  • Lee, Eun-Gu;Yun, Hyun-Min;Kim, Cheol-Seong
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.119-127
    • /
    • 2002
  • An algorithm for analyzing the characteristics of the power BJT using numerical analysis method is proposed. The Fermi-Dirac statistics is used to calculate the carrier concentration in highly doped region. Philips Unified mobility model, SRH model and Auger model is used to calculate the recombination current of base region. To verify the accuracy of the proposed method, the collector current of BANDIS is compared with the measured data in the condition of the base current increased from $1.0[{\mu}A]\;to\;3.5[{\mu}A]$. The collector current of BANDIS show a maximum relative error within 8.9% compared with the measured data.

  • PDF

ZnO on Thiolated Graphene Oxide as Efficient Photocatalyst for Degradation of Methylene Blue

  • Kim, Yu Hyun;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3586-3590
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active heterogeneous ZnO photocatalyst (graphene oxide-zinc oxide: GO-ZnO), specifically by deposition of ZnO nanoparticles onto thiolated GOs. The resultant GO-ZnO sample was characterized by TEM, XRD, Auger, XPS, and Raman measurements, revealing that the size-similar and quasi-spherical ZnO nanoparticles were anchored to the thiolated GO surfaces. The average particle diameter was about 2.5 nm. In the photodegradation of methylene blue (MB) under ultraviolet (UV) light, GO-ZnO exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure ZnO particles. This strong photocatalytic performance of GO-ZnO can be attributed to the suppression of electron recombination and the enhancement of mass transportation. The results showed that thiolated GO is the preferable supporting material.

Effect of surface damage remove etching of Reactive Ion Etching for Crystalline silicon solar cell

  • Park, Jun-Seok;Byeon, Seong-Gyun;Park, Jeong-Eun;Lee, Yeong-Min;Lee, Min-Ji;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.404-404
    • /
    • 2016
  • 태양전지 제작 시 표면에 피라미드 구조를 형성하면 입사되는 광의 흡수를 높여 광 생성 전류의 향상에 기여한다. 일반적인 KOH를 이용한 습식 표면조직화 공정은 평균 10%의 반사율을 보였으며, 유도 결합 플라즈마를 이용한 RIE 공정은 평균 5.4%의 더 낮은 반사율을 보였다. 그러나 RIE 공정을 이용한 표면조직화는 낮은 반사율과 서브 마이크론 크기의 표면 구조를 만들 수 있지만 플라즈마 조사에 의한 표면 손상이 많이 발생하게 된다. 이러한 표면 손상은 태양전지 제작 시 표면에서 높은 재결합 영역으로 작용하게 되어 포화 전류(saturation currents, $J_0$)를 증가시키고 캐리어 수명(carrier lifetime, ${\tau}$)을 낮추는 결함 요소로 작용한다. 이러한 플라즈마에 의한 표면 손상을 제거하기 위해 HF, HNO3, DI-water를 이용하여 DRE(Damage Remove Etching) 공정을 진행하였다. DRE 공정은 HF : DI-water 솔루션과 HNO3 : HF : DI-water 솔루션의 두 가지 공정을 이용하여 공정 시간을 가변하며 진행하였다. 포화전류($J_0$), 캐리어 수명(${\tau}$), 벌크 캐리어 수명(Bulk ${\tau}$)을 비교를 하기위해 KOH, RIE, RIE + DRE 공정을 진행한 세 가지 샘플로 실험을 진행하였다. DRE 공정을 적용할 경우 공정 시간이 지날수록 반사도가 높아지는 경향을 보였지만, 두 번째의 최적화된 솔루션 공정에서 $2.36E-13A/cm^2$, $42{\mu}s$$J_0$, Bulk ${\tau}$값과 가장 높은 $26.4{\mu}s$${\tau}$를 얻을 수 있었다. 이러한 결과는 오제 재결합(auger recombination)이 가장 많이 발생하는 지역인 표면과 불균일한 도핑 영역에서 DRE 공정을 통해 나아진 표면 특성과 균일한 도핑 프로파일을 형성하게 되어 재결합 영역과 $J_0$가 감소 된 것으로 판단된다. 높아진 반사도의 경우 $SiN_x$를 이용한 반사방지막을 통해 표면 반사율을 1% 이내로 내릴 수 있어 보완이 가능하였다. 본 연구에서는 RIE 공정 중 플라즈마에 의해 발생하는 표면 손상 제거를 통하여 캐리어 라이프 타임의 향상된 조건을 찾기 위한 연구를 진행하였으며, 기존 RIE 공정에 비해 반사도의 상승은 있지만 플라즈마로 인한 표면 손상을 제거하여 오제 재결합에 의한 발생하는 $J_0$를 낮출 수 있었고 높은 ${\tau}$값인 $26.4{\mu}s$의 결과를 얻어 추후 태양전지 제작에 향상된 효율을 기대할 수 있을 것으로 기대된다.

  • PDF

Reliablity of Distributed Feedback Laser Diodes for High-speed Optical Communication Systems (고속 광통신 시스템용 비대칭 분포귀환형 레이져 다이오드의 신뢰성에 관한 연구)

  • Jeon, Su-Chang;Joo, Han-Sung;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.96-99
    • /
    • 2005
  • As the demand of internet networks using backbone communication systems recently increased, the researches on the high-speed wideband optical communication systems are required. For high-speed optical communication systems, asymmetric sampled grating distributed feedback laser diodes (DFB-LDs) are developed and the reliability of DFB-LDs is examined. The reliability of DFB-LDs is performed by monitoring I-V and L-I characteristics and two degradation phenomena related to the electrical characteristics of LDs are observed during the life tests. The first degradation phenomenon by increasing the reverse current is considered as a formation of leakage current path enough to prevent lasing operation in lateral blocking layer near active region of lasers. The second degradation phenomenon by decreasing the forward current is considered as activation of non-radiative Auger recombination process by thermal energy and the second degradation phenomenon is recovered after the off-test period at room temperature Eventually, evaluating the reliability of DFB LDs can allow us to improved the manufacturability in high-volume manufacturing.

  • PDF

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF