• Title/Summary/Keyword: auger electron analysis

Search Result 115, Processing Time 0.023 seconds

The surface kinetic properties of $ZrO_2$ Thin Films in dry etching by Inductively Coupled Plasma

  • Yang-Xue, Yang-Xue;Kim, Hwan-Jun;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.105-105
    • /
    • 2009
  • $ZrO_2$ is one of the most attractive high dielectric constant (high-k) materials. As integrated circuit device dimensions continue to be scaled down, high-k materials have been studied more to resolve the problems for replacing the EY31conventional $SiO_2$. $ZrO_2$ has many favorable properties as a high dielectric constant (k= 20~25), wide band gap (5~7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2/Si$ structure. In order to get fine-line patterns, plasma etching has been studied more in the fabrication of ultra large-scale integrated circuits. The relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compound In this study, the surface kinetic properties of $ZrO_2$ thin film was investigated in function of Ch addition to $BCl_3/Ar$ gas mixture ratio, RF power and DC-bias power based on substrate temperature. The figure 1 showed the etch rate of $ZrO_2$ thin film as function of gas mixing ratio of $Cl_2/BCl_3/Ar$ dependent on temperature. The chemical state of film was investigated using x-ray photoelectron spectroscopy (XPS). The characteristics of the plasma were estimated using optical emission spectroscopy (OES). Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Properties of Au Clusters Supported on $TiO_2$ Studied by XPS, ISS, AES, and TPD (XPS, ISS, AES, TPD를 이용한 $TiO_2$ 위에 지지된 Au 클러스터의 특성 연구)

  • Kim, Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.607-617
    • /
    • 1998
  • Au was dosed on $TiO_2(001)$ film grown epitaxially on Mo(100) surface in about 90 ${\AA}$ thickness. The growth mode of Au, thermal behavior and stability of the Au clusters, and the binding energy shift of Au 4f with the change in the amount of Au loading were studied by Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) spectroscopy, Ion Scattering Spectroscopy (ISS), and X-ray Photoelectron Spectroscopy (XPS). Au grows three dimensionally on $TiO_2(001)$ film and the average size of Au clusters prepared at low temperature is smaller than those at higher temperature and the size increases with temperature irreversibly. Au clusters on $TiO_2(001)/Mo(100)$ start evaporation at 1000 K. TPD spectra of Au show very asymmetric peaks with the same leading edges irrespective of the amount of Au loading. The temperature at the peak maximum increases with the amount of Au. The desorption energy of Au obtained from the leading edge analysis of the TPD spectra is about 50 kcal/mol. The initial sticking coefficient of Au on $TiO_2(001)$ is constant in the temperature range of 200-600 K. The binding energy of Au 4f for the Au loaded on the film less than 2.0 MLE shifts to higher energy compared with the bulk Au. The shift is +0.3 eV at 0.1 MLE Au amount.

  • PDF

Experimental study for removing silver sulfide from silver objects by Nd:YAG laser cleaning (은제품의 황화은 부식층 제거를 위한 Nd:YAG 레이저클리닝 실험 연구)

  • Lee, Hyeyoun;Cho, Namchul
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Silver objects tarnish with black from reaction with sulfurous acid or hydrogen sulfide of atmospheric. Blackening of silver objects results from formation of silver sulfide($Ag_2O$) on the surface. Silver sulfide usually is usually removed by conservation treatment. There are several cleaning methods such as chemical, electrochemical and micro-abrasion cleaning, but all of them consume silver. This study investigated the safe and effective parameter of laser cleaning by test on silver coupons. Laser cleaning is a selective process for the removal of specific substances. At first, laser cleaning applied to plain silver coupons, which were not corroded, to find out the safe range of laser energy density. From results, plain silver coupons were not changed at 1064nm below $4.00J/cm^2$ and at 532nm below $2.39J/cm^2$. The corrosion layer(silver sulfide) of artifical corroded silver coupons was removed at 1064nm with $2.39J/cm^2$ by 5~10 pulses and at 532nm with $1.19J/cm^2$ by 5~10 pulses. The removal thickness of corrosion layer was about 13-25nm per a laser pulse using AES analysis. In addition, laser cleaning tested the tarnish silver rings based on the results of silver coupons. As a result of test, the black surface were clean successfully and gave luster of silver, which showed the application possibility of laser cleaning for silver objects.

Exchange coupling of Co/NiMn bilayer (Co/NiMn의 교환 자기결합에 관한 연구)

  • 안동환;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.171-177
    • /
    • 2000
  • Exchange coupling of Co/NiMn bilayers fabricated by RF magnetron sputtering method was studied. We investigated the variation of exchange coupling field (H$\sub$ex/) for different annealing temperature and time. The maximum exchange coupling field was obtained after 13hr annealing at 300 $^{\circ}C$. With respect to deposition sequence, it was demonstrated that NiMn-top bilayers had higher exchange coupling field than NiMn-bottom bilayers. Ta capping layer was shown to be essential in achieving exchange coupling and Auger Electron Spectroscopy (AES) proved that uncapped NiMn/Co bilayers did not have exchange coupling because of oxygen incorporation into film. We also observed the effect of Ta underlayer on exchange coupling. It was found that Ta underlayer had better not be used for attaining higher exchange coupling. XRD analysis showed that Ta underlayer helped bilayers develop texture, but it was not essential to exchange coupling of Co/NiMn bilayers, which is in contrast to NiFe/NiMn system. Furthermore, the NiMn and Co thickness dependence of exchange coupling has been investigated. The exchange coupling strength reached the maximum above 200 ${\AA}$ NiMn thickness and had inversely proportional relation with Co thickness.

  • PDF

Formation of MOCVD TiN from a New Precursor (새로운 증착원으로 형성된 MOCVD TiN에 관한 연구)

  • Choe, Jeong-Hwan;Lee, Jae-Gap;Kim, Ji-Yong;Lee, Eun-Gu;Hong, Hae-Nam;Sin, Hyeon-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.244-250
    • /
    • 1999
  • MOCVD TiN films were prepared from a new TiN precursor, tetrakis(etylmethylamino)titanium (TEMAT) and ammonia. Deposition of TiN films from a single precursor, TEMA T yielded the growth rates of $70 to 1050\AA$/min, depending on the deposition temperature. Furthermore, the excellent bottom coverage of -90% over $0.35\mu\textrm{m}$ contacts was obtained at $275^{\circ}C$. The addition of ammonia to TEMA T lowered the resistivity of as- deposited TiN film to ~ $800\mu\omega-cm$ from $3500~6000\mu\omega-cm$ and improved the stability of TiN film in air. Examination of the films by Auger electron spectroscopy(AES) showed that the oxygen and carbon contents decreased with the addition of ammonia. However, increasing ammonia flow rate decreased the bottom coverage of TiN films over $0.5\mu\textrm{m}$ contacts, probably due to the high sticking coefficient of intermediate species produced from the gas phase reaction of TEMA T and ammonia. Based on the byproduct gases detected by the quadrupole mass spectrometer (QMS), the transammination reaction was proposed to be responsible for TiN deposition. In addition, XPS analysis revealed that the carbon in the films made from TEMA T and ammonia was metallic carbon, suggesting that $\beta$-hydrogen activation process occurs competitively with the transammination reaction.

  • PDF