FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.
This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.
Newly developing SAR (Synthetic Aperture Radar) sensors commonly include high resolution X-band those data are expected to contribute various applications. Recent few studies are presenting potential of X-band SAR data in forest related application. This study tried to investigate the relationship between forest stand parameters and multi-band SAR normalized backscattering. Multi-band SAR data was radiometric corrected to compare signal from different forest stand condition. Then correlation coefficients were estimated between attribute of forest stand map and normalized backscattering coefficients. Although overall correlation coefficients are not high, only X-band shows strong relationship with DBH class than other bands. The signal of C- and L-band is composed of a large number of discrete tree components such as leaves, stems, even background soil. In forest, strength of radar backscattering is affected by complex parameters. Further study might be considered more various forest stand parameters such as canopy density, stand height, volume, and biomass.
This paper describes an a, pp.oach to recognizing composite features of prismatic parts. AAG (Attribute Adjacency Graph) is adopted as the basis of describing basic feature, but it is extended to enhance the expressive power of AAG by adding face type, angles between faces and normal vectors. Our a, pp.oach is called Extended AAG (EAAG). To simplify the recognition procedure, feature classification tree is built using the graph types of EEA and the number of EAD's. Algorithms to find open faces and dimensions of features are exemplified and used in decomposing composite feature. The processing sequence of recognized features is automatically determined during the decomposition process of composite features.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.892-894
/
2005
의미 분석이란 프로그램의 각 구성요소의 결합이 의미적으로 타당한가를 분석하는 과정으로 최근 컴파일러의 제작에서 필수 불가결한 요소이며, 속성문법(attribute grammar)이나 경험적인 방법(manual method)으로 해결한다. 그러나 이러한 방법론들은 효율성이나 자동화 측면에서 제약성을 가진다. 본 연구에서는 이러한 단점을 보완하기 위해 의미 분석정보가 포함된 시멘틱 트리를 정의하고, 대부분의 컴파일러에서 사용되는 구문분석 결과물인 추상 구문 트리를 시멘틱 트리로 변환하는 기법을 제안한다. 시멘틱 트리 변환기법은 의미 분석과정을 시멘틱 노드 단위로 처리하므로, 의미 분석 과정이 일관적으로 수행되며 효율적이고, 타 자료구조로의 변환이 용이하며 자동화가 용이하다.
Journal of Korea Artificial Intelligence Association
/
v.1
no.2
/
pp.21-25
/
2023
The purpose of this study was to compare the performance using multiple regression models to predict the energy consumption of steel industry. Specific independent variables were selected in consideration of correlation among various attributes such as CO2 concentration, NSM, Week Status, Day of week, and Load Type, and preprocessing was performed to solve the multicollinearity problem. In data preprocessing, we evaluated linear and nonlinear relationships between each attribute through correlation analysis. In particular, we decided to select variables with high correlation and include appropriate variables in the final model to prevent multicollinearity problems. Among the many regression models learned, Boosted Decision Tree Regression showed the best predictive performance. Ensemble learning in this model was able to effectively learn complex patterns while preventing overfitting by combining multiple decision trees. Consequently, these predictive models are expected to provide important information for improving energy efficiency and management decision-making at steel industry. In the future, we plan to improve the performance of the model by collecting more data and extending variables, and the application of the model considering interactions with external factors will also be considered.
Depression is the most common and widespread mood disorder. About 20% of the population might suffer a major, incapacitating episode of depression during their lifetime. This disorder can be classified into two types: major depressive disorders and bipolar disorder. Since pharmaceutical treatments are different according to types of depression disorders, correct and fast classification is quite critical for depression patients. Yet, classical statistical method, such as minnesota multiphasic personality inventory (MMPI), have some difficulties in applying to depression patients, because the patients suffer from concentration. We used electroencephalogram (EEG) analysis method fer classification of depression. We extracted nonlinearity of information flows between channels and estimated approximate entropy (ApEn) for the EEG at each channel. Using these attributes, we applied two types of data mining classification methods: decision tree and possibilistic support vector machines (PSVM). We found that decision tree showed 85.19% accuracy and PSVM exhibited 77.78% accuracy for classification of depression, 30 patients with major depressive disorder and 24 patients having bipolar disorder.
Journal of the Korean Association of Geographic Information Studies
/
v.19
no.4
/
pp.169-185
/
2016
Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.
KIPS Transactions on Software and Data Engineering
/
v.4
no.9
/
pp.409-418
/
2015
In order to delivery of the correct information in IoT environment, it is important to deduce collected information according to a user's situation and to create a new information. In this paper, we propose a control access scheme of information through context-aware to protect sensitive information in IoT environment. It focuses on the access rights management to grant access in consideration of the user's situation, and constrains(access control policy) the access of the data stored in network of unauthorized users. To this end, after analysis of the existing research 'CP-ABE-based on context information access control scheme', then include dynamic conditions in the range of status information, finally we propose a access control policy reflecting the extended multi-dimensional context attribute. Proposed in this paper, access control policy considering the dynamic conditions is designed to suit for IoT sensor fusion environment. Therefore, comparing the existing studies, there are advantages it make a possible to ensure the variety and accuracy of data, and to extend the existing context properties.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.391-396
/
2003
This paper proposes a new approach that converts continuous-valued attributes to categorical-valued ones considering the distribution of target attributes(classes). In this approach, It can be possible to get optimal interval boundaries by considering the distribution of data itself without any requirements of parameters. For each attributes, the distribution of target attributes is projected to one-dimensional space. And this space is clustered according to the criteria like as the density value of each target attributes and the amount of overlapped areas among each density values of target attributes. Clusters which are made in this ways are based on the probabilities that can predict a target attribute of instances. Therefore it has an interval boundaries that minimize a loss of information of original data. An improved performance of proposed discretization method can be validated using C4.5 algorithm and UCI Machine Learning Data Repository data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.