• Title/Summary/Keyword: attributably pure confidence

Search Result 4, Processing Time 0.015 seconds

The development of symmetrically and attributably pure confidence in association rule mining (연관성 규칙에서 활용 가능한 대칭적 기여 순수 신뢰도의 개발)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.601-609
    • /
    • 2014
  • The most widely used data mining technique for big data analysis is to generate meaningful association rules. This method has been used to find the relationship between set of items based on the association criteria such as support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that we can not know the direction of association by it. The attributably pure confidence was developed to compensate for this drawback, but the value was changed by the position of two item sets. In this paper, we propose four symmetrically and attributably pure confidence measures to compensate the shortcomings of confidence and the attributably pure confidence. And then we prove three conditions of interestingness measure by Piatetsky-Shapiro, and comparative studies with confidence, attributably pure confidence, and four symmetrically and attributably pure confidence measures are shown by numerical examples. The results show that the symmetrically and attributably pure confidence measures are better than confidence and the attributably pure confidence. Also the measure NSAPis found to be the best among these four symmetrically and attributably pure confidence measures.

The proposition of attributably pure confidence in association rule mining (연관 규칙 마이닝에서 기여 순수 신뢰도의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.235-243
    • /
    • 2011
  • The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between each set of items based on the association thresholds such as support, confidence, lift, etc. There are many interestingness measures as the criteria for evaluating association rules. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence measure was developed to compensate for this drawback, but it is useless in the case that the value of positive confidence is the same as that of negative confidence. This paper propose a attributably pure confidence to evaluate association rules and then describe some properties for a proposed measure. The comparative studies with confidence, net confidence, and attributably pure confidence are shown by numerical example. The results show that the attributably pure confidence is better than confidence or net confidence.

The proposition of compared and attributably pure confidence in association rule mining (연관 규칙 마이닝에서 비교 기여 순수 신뢰도의 제안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.523-532
    • /
    • 2013
  • Generally, data mining is the process of analyzing big data from different perspectives and summarizing it into useful information. The most widely used data mining technique is to generate association rules, and it finds the relevance between two items in a huge database. This technique has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, etc. Among many interestingness measures, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The attributably pure confidence and compared confidence are able to determine the direction of the association, but their ranges are not [-1, +1]. So we can not interpret the degree of association operationally by their values. This paper propose a compared and attributably pure confidence to compensate for this drawback, and then describe some properties for a proposed measure. The comparative studies with confidence, compared confidence, attributably pure confidence, and a proposed measure are shown by numerical example. The results show that the a compared and attributably pure confidence is better than any other confidences.

The application for predictive similarity measures of binary data in association rule mining (이분형 예측 유사성 측도의 연관성 평가 기준 적용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.495-503
    • /
    • 2011
  • The most widely used data mining technique is to find association rules. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are some basic association thresholds to explore meaningful association rules ; support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence and the attributably pure confidence were developed to compensate for this drawback, but they have other drawbacks.In this paper we consider some predictive similarity measures for binary data in cluster analysis and multi-dimensional analysis as association threshold to compensate for these drawbacks. The comparative studies with net confidence, attributably pure confidence, and some predictive similarity measures are shown by numerical example.