• Title/Summary/Keyword: atterberg limits

Search Result 37, Processing Time 0.021 seconds

Assessment of swelling pressure of stabilized Bentonite

  • Angin, Zekai;Ikizler, Sabriye Banu
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1219-1225
    • /
    • 2018
  • In this study, a comprehensive laboratory experimental programme was conducted on expansive soil with a high swelling potential to study the influence of different additive materials on swelling pressure and index properties. Lime, sand, multifilament fiber and fibrillated fiber were used for stabilization of expansive soil. Lime, sand and fibers were respectively added to the expansive soil at 0-7%, 0-80%, 0-0.5%. On each mixture that was prepared by the proportions mentioned above, Atterberg limits, compaction, and swelling pressure tests were conducted. From the result of these experiments, the swelling pressure-time relation could be replaced by a rectangular hyperbola established to facilitate the prediction of ultimate percent swelling with a few initial data points. The best type of additive and its optimum ratio for engineering purposes could be estimated rapidly by this approach.

Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil

  • Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.633-647
    • /
    • 2014
  • Biopolymers, polymers produced by living organisms, are used in various fields (e.g., medical, food, cosmetic, medicine) due to their beneficial properties. Recently, biopolymers have been used for control of soil erosion, stabilization of aggregate, and to enhance drilling. However, the inter-particle behavior of such polymers on soil behavior are poorly understood. In this study, an artificial biopolymer (${\beta}$-1,3/1,6-glucan) was used as an engineered soil additive for Korean residual soil (i.e., hwangtoh). The geotechnical behavior of the Korean residual soil, after treatment with ${\beta}$-1,3/1,6-glucan, were measured through a series of laboratory approaches and then analyzed. As the biopolymer content in soil increased, so did its compactibility, Atterberg limits, plasticity index, swelling index, and shear modulus. However, the treatment had no effect on the compressional stiffness of the residual soil, and the polymer induced bio-clogging of the soil's pore spaces while resulting in a decrease in hydraulic conductivity.

The Characteristics of Strength and Consolidation of Clayey Soil Dependent on pH of Soil Pore Water (간극수의 pH가 점성토의 강도와 압밀특성에 미치는 영향)

  • Lee, Ho-Jin;Kim, Byung-Il;Park, Sang-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1047-1054
    • /
    • 2005
  • The purpose of this study is the understanding to changes in the characteristic of soil structure and classification, atterberg limits, undrained shear strength and consolidation of clayey soil dependent on pH of soil pore water. A series of tests including consistency tests, uniaxial compressive tests, vane tests and oedometer tests are performed on. The test results indicated that pH changes in the soil pH resulted in changes in the soil structure and classification, stress-strain behavior. Specially, when pH is conditioned to 7, liquid limit, undrained shear strength and preconsolidation pressure are the largest.

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

Geotechnical Properties and Environmental Effect of Waste Gymsum (폐석고의 공학적 특성 및 환경적 영향 분석에 관한 연구)

  • 신은철;오영인;이희재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.90-94
    • /
    • 1999
  • Waste gypsum is produced about 2.6million tons per year as a by-product in the process of TiO$_2$production. Geotechnical properties such as natural water content, specific gravity, Atterberg limits were determined to figure out the engineering characteristics waste gypsum. Grain-size distribution, compaction, CBR tests, and unconfined compression test for various mixing ratios between waste gypsum and decomposed granite soil 8t dredged soil. The environmentally adverse effect for mixed specimen with waste gypsum is far below than those of regulatory requirement.

  • PDF

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

A Study on the Coefficient of Linear Extensibility of various Paddy Soils in Korea (우리나라 수종(数種) 답토양(畓土壤)의 선형팽창(線型膨脹) 지수(指数)에 관(關)한 연구(硏究))

  • Jung, Yeun-Tae;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1983
  • The results of COLE(Coefficient of Linear Extensibility) measurement on various paddy soils in Korea are summarized as follows; 1. The COLE values of paddy soil in Korea varied from 0.024 to 0.094 in the surface soil while in the sub-surface soils those were ranging from 0.022 to 0.115. The poorer the relative drainage and the finer the texture caused, the greater the COLE values. 2. The matured clayey soils on fluvio-marine plains and local alluvium derived from the Tertiary materials have COLE values more than 0.09 which is demonstrated that the necessity of COLE measurement throughout profiles so that could be considered the characteristic in the characteristic of those soils. 3. The clay content has the highest positive correlation (r=0.81~0.76) values. The content of organic matter, water content at 1/3 bar, Atterberg limits, water stable aggregate etc. also have significant positive correlation with COLE values while the context of sand and silt show negative correlation. 4. Although the COLE values measured on horizontal linear bases were slightly greater than those measured on volume bases practicability was for granted. For more accurate measurement of COLE, it is reasonable to have the average values of COLE calculated from the horizontal and vertical bases.

  • PDF

Geotechnical Characteristics of the Ulleung Basin Sediment, East Sea (1) - Cosolidation and Shear Waves Velocity (동해 울릉분지 심해토의 지반공학적 특성(1) - 압밀 특성, 전단파 특성에 관한 연구)

  • Kim, Youngmoon;Lee, Jongsub;Lee, Jooyong;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2013
  • A drilling exploration in deep sea is being processed to develop new energy resource in the world. In 2007, the presence of the gas hydrate had been confirmed during the UBGH1 (Ulleung Basin Gas Hydrate Expedition 1) in the Ulleung Basin. Geotechnical properties of the deep marine sediment are important factors for assessing the safety of gas production facility and productivity from the hydrate bearing sediment. In this study, comprehensive laboratory tests are conducted to investigate the geotechnical engineering characteristics of the deep marine sediments recovered from the hydrate occurrence regions during the UBGH2 (Ulleung Basin Gas Hydrate Expedition 2) in the Ulleung Basin, East Sea, Korea. The index properties of the specimens including the specific gravity, atterberg limits, specific surface, and particle size distribution are measured, and these are compared to the results reported by previous studies. A zero-lateral strain cell, which houses bender elements, is used to determine stress-dependant characteristics and shear wave velocities with the vertical effective stresses. Furthermore, the hydraulic conductivity is calculated based on the consolidation test results.

The Physical and Shear Strength Properties of the Weathered Limestone Soils in Changsung and Hwasun Area of Chonnam Province, Korea (전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성)

  • 김해경
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.335-344
    • /
    • 2003
  • This study is focused to the physical and shear strength properties of the weathered limestone soils distributed in Changsung and Hwasun area, Chonnam province. Disturbed soil was used as soil samples. To grasp the physical and shear strength properties of weathered limestone soil, specific gravity test, atterberg limit, grain size distribution and direct shear test were conducted in the laboratory. The physical and shear strength properties of the weathered limestone soil in the study areas are as follows. The range of specific gravity (Gs) is 2.78 to 2.80, liquid limits (LL) 37 to 38 (%), plasticity index (PI) 13.7 to 15.4, and soil classification CL. The range of strength parameters by direct shear test (vd, $1.5t/\textrm{m}^3$) is 3.07 to 4.4 ($t/\textrm{m}^2$) of cohesion and 34.8 to $42.4^{\circ}$ of internal friction angle in unsaturated soils. As a result of comparing with the weathered granite soils (Yang, 1997: Mun, 1998: Park, 1998), it is considered that physical properties of the weathered limestone soils in this study are different from the weathered granite soils. On the other hand, internal friction angle of shear parameters is found to be similar.