• 제목/요약/키워드: attention capacity

검색결과 551건 처리시간 0.023초

공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상 (Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping)

  • 전형권;홍순현;김민정;구자훈;이희상;최규석;김천중
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

딥러닝과 I-V 곡선을 이용한 태양광 스트링 고장 진단 (Fault Diagnosis of PV String Using Deep-Learning and I-V Curves)

  • 신우균;오현규;배수현;주영철;황혜미;고석환
    • Current Photovoltaic Research
    • /
    • 제10권3호
    • /
    • pp.77-83
    • /
    • 2022
  • Renewable energy is receiving attention again as a way to realize carbon neutrality to overcome the climate change crisis. Among renewable energy sources, the installation of Photovoltaic is continuously increasing, and as of 2020, the global cumulative installation amount is about 590 GW and the domestic cumulative installation amount is about 17 GW. Accordingly, O&M technology that can analyze the power generation and fault diagnose about PV plants the is required. In this paper, a study was conducted to diagnose fault using I-V curves of PV strings and deep learning. In order to collect the fault I-V curves for learning in the deep learning, faults were simulated. It is partial shade and voltage mismatch, and I-V curves were measured on a sunny day. A two-step data pre-processing technique was applied to minimize variations depending on PV string capacity, irradiance, and PV module temperature, and this was used for learning and validation of deep learning. From the results of the study, it was confirmed that the PV fault diagnosis using I-V curves and deep learning is possible.

다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성 (Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties)

  • 신슬기;조혁래;정용재;구상모;오종민;신원호
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

AES 기반 화이트박스 암호 기법의 지연 시간과 연산량 분석 (Analysis of Latency and Computation Cost for AES-based Whitebox Cryptography Technique)

  • 이진민;김소연;이일구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.115-117
    • /
    • 2022
  • 화이트박스 암호 기법은 암호 키 정보를 소프트웨어 기반 암호화 알고리즘에 섞어 암호 키의 노출을 막는 방식이다. 화이트박스 암호 기법은 허가되지 않은 역공학 분석으로 메모리에 접근하여 기밀 데이터와 키를 유추하기 어렵게 만들어서 종래의 하드웨어 기반의 보안 암호화 기법을 대체하는 기술로 주목받고 있다. 하지만, 암복호화 과정에서 연산 결과와 암호 키를 숨기기 위해 크기가 큰 룩업테이블을 사용하기 때문에 암복호 속도가 느리고, 메모리 사이즈가 커지는 문제가 발생한다. 특히 최근 저가, 저전력, 경량의 사물인터넷 제품들은 제한된 메모리 공간과 배터리 용량 때문에 화이트박스 암호을 적용하기 어렵다. 또한, 실시간 서비스를 지원해야 하는 네트워크 환경에서는 화이트박스 암호의 암복호화 속도로 인해 응답 지연 시간이 증가하여 통신 효율이 열화된다. 따라서 본 논문에서는 S.Chow가 제안한 AES 기반 화이트박스(WBC-AES)를 사용하여 속도와 메모리 요구조건을 만족할 수 있는지 실험 결과를 토대로 분석한다.

  • PDF

수상운송로로서 한강의 이용가능성에 관한 연구 (On the Availability of Han river as Water Transport Route)

  • 최강일;노홍승;이철영
    • 한국항만학회지
    • /
    • 제7권2호
    • /
    • pp.37-60
    • /
    • 1993
  • Because of the rapid growing traffic volumes of cargo, especially between Seoul and Inchon, and lack of investment into transport infrastructure in the past, in Kyong-in area have suffered from the serious traffic congestion in the public-road and the express-way network, But the further expansion of the traffic volume in near future is difficult due to burden of the higher expansion of the traffic volume in near future is difficult due to burden of the higher construction cost. Although the traffic congestion on the Kyung-in railway, is not very serious comparing with the road sector, the shortage of capacity on some main lines becomes emerged as a problem as railway traffic has increased. Unlike these two modes, the water transport, which has been paid relatively less attention for commodity transport in Kyong-in area, has not any constaint in this respect. Han river has been used as a water transport route in Chosun Dynasty which is called Cho-wun. This paper therefore aims to propose the availability of Han river as the alternative water transportation mode, in order to decrease the congestion between Seoul-Inchon by considering the construction of Kyong-in artificial water channel in near future. In this paper, we investigate the availability of Nanji-do as the physical distribution depot connecting with the circulation express way in the national capital distribution depot connecting with the circulation express way in the national capital. We also estimate the traffic volume by using the push-barge carrier (300DWT) in the same channel through the simulation under some assumptions such as ship's turnaround time, speed, etc.

  • PDF

나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석 (Lubrication Analysis of Parallel Slider Bearing with Nanolubricant)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가 (Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites)

  • 황준현;신효원;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권2호
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

Sustainability Appraisal of Chinese Railway Projects In Nigeria: Afoot

  • Awodele, Imoleayo Abraham;Mewomo, Modupe Cecilia
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.967-974
    • /
    • 2022
  • It is no news that Nigeria's infrastructure challenge is enormous. In the global ranking, Nigeria ranked low in quantity and quality of its infrastructural provision which has a great impact on the ease of business transaction. Low investments in transportation have brought about the current infrastructural deficit. Recently, the Nigerian government has made effort to address at least to some extent the infrastructural deficit through Public-Private Partnership, but this has not yielded the desired result. Moreover, the sustainability issues relating to railway projects such as, emissions, noise pollution, ecosystem, and other environmental issues calls for urgent attention. Hence, this necessitated consideration on sustainability appraisal for the Chinese rail project in Nigeria. This study reviews sustainability of railway projects built by the Chinese firm in Nigeria with particular emphasis on the environmental and social impact of these projects. The study further identified issues and challenges in project implementation with a particular focus on civil dialogue and community engagements. A detailed literature search was conducted on railway projects and infrastructure by systematically reviewing selected published articles.The analysis of the selected articles identified sustainability issues and potential for improvement of Chinese railway projects and how they contribute to or inhibit competitiveness in the Nigerian railway market. From the literature searched, some of the projects constructed by Chinese firm revealed that there is economic and social impact of railway projects delivered by the Chinese firm in terms of capacity development and knowledge transfer potentiality. For instance, in the just concluded Lagos-Ibadan railway projects, the study gathered that the project brought about 5000 jobs and local staff were trained by the Chinese company, this will boost man power and local content capability. Also, it will significantly improve Nigeria's infrastructure and boost its economic development. The study suggests that Nigerian government should ensure and provide an enabling environment that is conducive for investment on the continent. Peace, improved security, and decent governance are the best conditions for sustainable transportation growth.

  • PDF