• Title/Summary/Keyword: atrial natriuretic peptides

Search Result 12, Processing Time 0.024 seconds

Characteristics of Atrial Natriuretic Peptide Release in Renal Hypertensive Rats (신성 고혈압 백서 심방의 심방이뇨 호르몬분비 특성)

  • Cho, Kyung-Woo;Seul, Kyung-Hwan;Kim, Suhn-Hee;Seul, Kyung-Mee;Koh, Gou-Young
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.261-268
    • /
    • 1990
  • It has long been suggested that the cardiac atrium is a low pressure volume receptor controlling body fluid volume and blood pressure. Recently, the cardiac atrium has been found to contain a family of powerful peptides. To clarify the relationship between high blood pressure and the biologically active atrial peptides, experiments were done to define the characteristics of atrial natriuretic peptide secretion in the isolated perfused atria of renal hypertensive rats. Higher concentrations of plasma atrial natriuretic peptide and renin activity were observed in the two-kidney, one clip hypertensive rat compared to the normotensive rat. Atrial volume changes in response to pressure elevations were attenuated in hypertensive rats compared to normotensive rats. Incremental response to atrial volume changes in ANP secretion was accentuated in hypertensive rats. These date suggest that the accentuated atrial natriuretic peptide response to volume changes of hypertensive rats may be a physiological or pathphysiological adaptation to the high blood pressure and may be, at least in part, responsible for the elevated levels of plasma atrial natriuretic peptide observed in hypertensive rats.

  • PDF

Effect of Atrial Natriuretic Factor on the Renal Function and Renin Release in Unanesthetized Rabbit (무마취 가토 신장기능에 미치는 Atrial Natriuretic Factor의 영향)

  • Lee, June-K.;Cho, Kyung-W.
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.103-124
    • /
    • 1986
  • Since it has been suggested that atrial receptor may be involved in the mechanism of extracellular volume regulation, it was shown that the granularity of atrial cardiocytes can be changed by water and salt depletion, and that an extract of cardiac atrial tissue, when injected intravenously into anesthetized rats, was shown to cause a large and rapid increase in renal excretion of sodium. Various natriuretic peptides were isolated and synthetized, and the effects were investigated by many workers. Most studies, however, have been carried out under anesthesia and there have teen some controversies over direct effect of the factor on the renal function. Therefore, it was attempted in this study to access the effects of an atrial extract and a synthetic natriuretic factor in unanesthetized rabbits. Intrarenal arterial infusion of atrial extract caused a rapid increase of urinary volume and excretion of sodium. Glomerular filtration rate and renal plasma flow were both increased with no change in filtration fraction. The ventricular extract produced no change in urinary excretion of electrolytes, nor in renal hemodynamics. Intrarenal infusion of synthetic atrial natriuretic factor caused increases of renal excretory rate of sodium, chloride and potassium, and $FE_{Na}$. Glomerular filtration rate, renal plasma flow increased. And free water clearance also increased. Accentuated excretory function correlated well with increased glomerular filtration rate and renal plasma flow during infusion and for 10 minutes following the cessation of the infusion. Renin secretion rate decreased during constant infusion of atrial natriuretic factor. However, no correlation was found with the changes in glomerular filtration rate, renal plasma flow, or urinary excretion of sodium. These results suggest that atrial extract or atrial natriuretic factor induces changes in renal hemodynamics, as in excretion of electrolytes either indirectly through hemodynamic changes or directly by inhibiting tubular reabsorption. At the same time, renin secretory function is affected by the factor possibly through an unknown mechanism.

  • PDF

Effects of Intrarenal Arterial Infusion of Pro-Atrial Natriuretic Peptides on Renal Function in Unanesthetized Rabbits (가토 신장기능에 미치는 Pro-Atrial Natriuretic Peptide의 영향)

  • Lee, Jeong-Eun;Cho, Kyung-Woo;Kim, Suhn-Hee
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.131-144
    • /
    • 1990
  • It is well known that the atrial natriuretic peptide (ANP) has a prepro-hormone of 151 amino-acids which loses their hydrophobic signal peptide to form 126 amino acid prohormone. The whole prohormone is released and then cleaved by proteases into more than one circulating forms. Recently, Winters et al. (1988a, b) reported that high concentrations of N-terminal fragments of prepro-ANP $(26{\sim}55),\;(56{\sim}92)\;and\;(104{\sim}123)$ were detected in human plasma. However, their physiological roles have not been established. The present study was conducted to determine whether the N-terminal fragments of pro-ANP have any effect on the renal function and to compare the effect with those of G-terminal fragments of pro-ANP The results indicate that intrarenal arterial infusions of prepro-ANP $(26{\sim}41),\;(26{\sim}55),\;(56{\sim}92)\;and\;(104{\sim}123)$ induced no significant changes in renal function. Whereas ${\alpha}-human$ ANP $(prepro-ANP,\;124{\sim}151)$ and pro-ANP caused a significant increase in urine volume, renal plasma flow, glomerular filtration rate, urinary excretions of sodium, chloride and potassium, and fractional excretion of sodium. These results suggest that the N-terminal fragments of pro-ANP are ineffective, while the C-terminal fragments retain the natriuretic and diuretic activities.

  • PDF

Effect of Atrial Natriuretic Peptide on the Proliferation and Activity of Osteoblastic Cells

  • Lee, Jong-Ryeul;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.283-289
    • /
    • 2000
  • Natriuretic peptides comprise a family of three structurally related peptides; atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). The present study was performed to investigate the effect of ANP on the proliferation and activity of ROS17/2.8 and HOS cells which are well-characterized osteoblastic cell lines. ANP dose-dependently decreased the number of ROS17/2.8 and HOS cells after 48-hour treatment. ANP generally increased the alkaline phosphatase activity of ROS17/2.8 and HOS cells after 48 hr treatment, regardless of the fact that basal activity of alkaline phosphatase was much lower in HOS cells compared to that of ROS17/1.8 cells. ANP increased the NBT reduction by ROS17/2.8 and HOS cells. ANP showed the variable but no significant effect on the nitric oxide production by ROS17/2.8 and HOS cells. ROS17/2.8 and HOS cells produced and secreted gelatinase into culture medium, and this enzyme was thought to be the gelatinase A type with the molecular weight determination. The gelatinase activity produced by ROS17/2.8 cells was increased by the treatment of ANP. However, the enzyme activity was not affected by ANP treatment in the HOS cell culture. In summary, ANP decreased the proliferation and increased the alkaline phosphatase activity and NBT reduction of osteoblasts. These results indicate that ANP is one of the important regulators of bone metabolism.

  • PDF

Expression of Natriuretic Peptide mRNAs in Isoproterenol-Induced Cardiac Hypertrophy in Rats

  • Kim, Soo-Kyung;Kwon, Gee-Youn;Chang, Eun-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.235-241
    • /
    • 2000
  • We examined the expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs upon isoproterenol (Iso)-induced cardiac hypertrophy in rats. Then, we tried to investigate the effects of sympatholytics to see if they can modulate the expression of ANP and BNP. In this study, RT-PCR technique was used to characterize the expression of ANP and BNP in right atrium (RA) and left ventricle (LV) of the hypertrophied rat heart. Histologic findings indicated that stimulation of ${\beta}-adrenoceptors$ with Iso for 5 days was sufficient to induce cardiac hypertrophy in rats. A continuous stimulation with Iso for 7 days resulted in an increase of the ANP and BNP expression in the LV and BNP expression in the RA. The increased expressions of ANP and BNP in the LV were slightly inhibited, and the increased expressions of BNP in the RA were markedly inhibited by a continuous treatment with propranolol, metoprolol, and clonidine for 7 days. Overall, our data present a differential expression of the natriuretic peptides in Iso-induced cardiac hypertrophy, and that the mechanisms involved in this differential ANP and BNP gene expression could be mediated via sympathetic nervous system.

  • PDF

Effects of Atrial Natriuretic Peptide on Renal and Hormonal Balances in terms of Aging in Rabbits (연령증가에 따른 Atrial Natriuretic Peptide의 신장과 호르몬 효과)

  • Kim, Jong-Duk;Kim, Suhn-Hee;Kim, Jung-Soo;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.51-66
    • /
    • 1989
  • Mammalian cardiocytes secrete atrial natriuretic peptides (ANPs) into plasma, which cause marked natriuresis, diuresis, vasorelaxation and inhibition of hormone secretions. Aging influences the ability of the kidney both to conserve and to excrete sodium; i.e., in old animals, the excretory capacity of sodium is reduced and the time required to excrete sodium load is prolonged. Therefore, it is possible that animals differing in ages may respond differently to ANP. In the present study, we determined whether the renal, hormonal and vascular effects of ANP may be influenced by aging in conscious rabbits. The plasma renin concentration decreased with aging but plasma ANP concentration was significantly lower only in 24-month-old rabbits. Plasma aldosterone concentration and atrial ANP content did not change by aging. In 1-month-old rabbits, ANP (atriopeptin III, 3 ug/kg) administered intravenously caused hypotension and decreased in plasma renin and aldosterone concentrations, but did not cause diuresis and natriuresis. In 2 to 5 month-old rabbits, ANP caused hypotension, decreases in Plasma renin and aldosterone concentrations and marked renal effects. However, in 24-month-old rabbits, all the above effects of ANP was blunted. With hydration of physiological saline at a rate of 15 ml/kg/h for 2hr, urine volume and glomerular filtration rate did not change but the electrolyte excretion as well as fractional excretion of sodium significantly increased. The plasma concentrations of active renin and aldosterone were decreased but plasma inactive renin and ANP concentrations were increased. The changes in renal function and plasma level of hormone showed no differences in different ages. These results suggest that the peripheral vascular receptors to ANP may develop earlier than those in the kidney, and the attenuated vascular and renal responses to ANP in the old age may be due to age-related modifications in renal function and blood vessel.

  • PDF

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai;Yu, Lamei;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.667-674
    • /
    • 2017
  • Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

Characteristics of hypoxia-induced ANP Secretion in Perfused Beating Atria (허혈성 자극에 의한 심방이뇨 호르몬 분비 반응의 특성)

  • Kim, Kong-Soo;Kim, Min-Ho;Kim, Chang-Gon;Kim, Suk-Kee;Cho, Kyung-Woo;Cui, Xun
    • Journal of Chest Surgery
    • /
    • v.33 no.5
    • /
    • pp.398-406
    • /
    • 2000
  • Background: Cardiac atrium is an endocrine gland secreting a family of natriuretic peptides. The secretion of atrial natriuretic peptide(ANP) had been shown to be controlled by variable factors. The change in atrial dynamics have been considered as one of the most prominent stimuli for the stimulation of ANP secretion. Hypoxic stress has been shown to increase cardiac ANP secretion. However, the mechanism by which hypoxia increases ANP secretion cardiac ANP secretions. However, the mechanism by which hypoxia increases ANP secretion has not to be defined. Therefore, the purpose of the present study was tow-fold: to develop a protocol to defined the effect of hypoxia on ANP secretion in perfused beating rabbit atria and to clarify the mechanism responsible for the accentuation by hypoxia of ANP secretion. Material and Method: Experiments have been done in perfused beating rabbit atria. ANP was measured by radioimmunoassay. Result: Hypoxic stimulus with nitrogen decreased atrial stroke volume. The decrease in atrial stroke volume recovered basal level during the period of recovery with oxygen. ANP secretion and the concentration of perfusate ANP in terms of extracellular fluid(ECF) translocation which reflects the rate of myocytic release of ANP were increased by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled to that of atrial stroke volume. At the start of recovery in atrial storke volume, ECF tranalocation incrased for several minutes. The above responses were stable and reproducible. Glibenclamide treatment prevented the recovery in atrial stroke volume. Increments by hypoxia of ANP secretion and ANP concentration were suppressed by glibenclamide. Conclusion: These results indicate that hypoxia incrased atrial myocytic ANP release and that the mechanism responsible for the accentuation is partially related to the change in K+ATP channel activity.

  • PDF