• Title/Summary/Keyword: atomic data

Search Result 1,410, Processing Time 0.032 seconds

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

  • Tak, Nam-Il;Kim, Min-Hwan;Lim, Hong-Sik;Noh, Jae Man;Drzewiecki, Timothy J.;Seker, Volkan;Downar, Thomas J.;Kelly, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.745-752
    • /
    • 2013
  • For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR), intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI) and the AGREE code of the University of Michigan (U of M). One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU) in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)

  • Seonggyu Choi;Bong-Ju Kim;Surin Seo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acid-base titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

Model for Transport of Accidently Released Radionuclides onto Rice-Fields and its Comparison with Experimental Data (사고시 논으로 유출된 핵종 이동 모델 및 실험결과와의 비교)

  • Keum, Dong-Kwon;Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Lim, Kwang-Muk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2004
  • A dynamic compartment model was developed to evaluate the transport of accidently released radionuclides onto rice-fields. In the model, the surface water compartment and shoot-base absorption were introduced to account for the effect of irrigation, which is essential to a rice cultivation. The soil mixing by plough and irrigation before transplanting rice was also considered, and the rate of root-uptake and shoot-base absorption were modeled in terms of the function of biomass. In order to test the validation of the model, it was applied to the analysis of some simulated $^{137}Cs$ deposition experiments that were performed while cultivating rice in a greenhouse using soils sampled from rice-fields around Kori, Yonggwang and Ulchin nuclear power plants. The model prediction was generally agreed within about one order of magnitude with experimental data.

Production and Application of Domestic Input Data for Safety Assessment of Disposal (처분안전성평가를 위한 국내고유 입력자료의 확보와 적용)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Youn-Myoung;Ko, Nak-Youl;Jeong, Jong-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • To provide domestic values of input parameters in a safety assessment of radioactive waste disposal under domestic deep underground environments, various kinds of experiments have been carried out under KURT (KAERI Underground Research Tunnel) conditions. The input parameters were classified, and some of them were selected for this study by the criteria of importance. The domestic experimental data under KURT environments were given top priority in the data review process. Foreign data under similar conditions to KURT were also gathered. The collected data were arranged and the statistical calculations were processed. The properties and distribution of the data were explained and compared to foreign values in view of their validity. The following parameters were analysed: failure time and early time failure rate of a container, solubility of nuclides, porosity and density of the buffer, and distribution coefficients of nuclides in the geomedia, hydraulic conductivity, diffusion depth of nuclides, groundwater flow rate, fracture aperture, length of internal fracture, and width of faulted rock mass in the host rock.

NEUTRON INDUCED CROSS SECTION DATA FOR IR-191 AND IR-193

  • Lee, Yong-Deok;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.803-808
    • /
    • 2006
  • The neutron induced nuclear cross section data for Ir-191 and Ir-193 were calculated and evaluated from unresolved resonance energy to 20MeV. The energy-dependent optical model potential parameters were determined based on the experimental data and applied up to 20MeV. A spherical optical model, a statistical model in an equilibrium energy region, and a multistep direct and multistep compound model in a pre-equilibrium energy region were used in the calculations. The direct capture model enhanced the fast neutron capture in the pre-equilibrium energy. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The calculations were found to be in good agreement with the experiment data. The evaluated cross section results were compiled with the ENDF-6 format. The fast energy results will be merged with the resonance parts to create a full evaluation library. The improvement of the neutron-induced cross section data will contribute to an increase in the efficiency of the production of Ir-192 as a radiation source.

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Characterization of uranium species in molten salt : An application of synchrotron-based XAFS spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.10a
    • /
    • pp.319.2-319
    • /
    • 2002
  • Synchrotron-based X-ray absorption spectroscopy has been applied to determine the changes in bulk oxidation state of uranium oxides in molten salt. From an analysis of XANES data, one can determine the cahnges in bulk oxidation-state of U compounds in salts(LiCl/KCl). XAFS spectroscpy is a powerful tool for probing the changes in valence state and structure of uranium compounds in colten salt as well as in noncrystalline form and doped in other matrices.

  • PDF