• Title/Summary/Keyword: atmospheric pollutants

Search Result 789, Processing Time 0.021 seconds

On the Determination Method of Background Aerosol Concentration (에어로졸의 배경농도 산정기법에 관한 연구)

  • Heo, Junghwa;Kim, Sang-Woo;Yoon, Soon-Chang;Kim, Ji-Hyoung;Kim, Man-Hae;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.501-511
    • /
    • 2013
  • In this study, we estimate the background concentration of black carbon (BC) mass concentration measured at Gosan Climate Observatory from January 2008 to December 2011 by applying six methods: (1) Mean and Median (2) Trimmed mean method deployed in Interagency Monitoring of Protected Visual Environments (IMPROVE) network program (hereafter, IMPROVE method), (3) Concentration-frequency distribution analysis method, (4) Advanced Global Atmospheric Gases Experiment (AGAGE) method (hereafter, AGAGE method), (5) Kaufman et al. (2001) method (hereafter, Kaufman method), and (6) Airmass sector analysis. The background concentration of BC mass concentrations is estimated to be about 400~900 ng $m^{-3}$, but each method shows a large difference. The estimated background concentration, in general, is arranged in the order of: mean > IMPROVE method > median > Kaufman method > concentration-frequency distribution analysis method > AGAGE method. The background concentration estimated by the airmass sector analysis is found to be about 550 ng $m^{-3}$ which is lower than those estimated by other methods. When we apply the same analytical period (i.e., 4-day and 6-day) to both AGAGE and Kaufman methods, the estimated background concentrations are quite similar. However, further researches on the development of statistical method for estimating background concentration for various gas-phase and particulate pollutants under different environment are needed.

The Study on the Level of Air Pollution at Four Department Stores in Pusan Area (부산지역 4개 백화점의 공기오염도에 관한 조사연구)

  • Moon, D.H.;Rhee, HW.;Lee, C.U.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.164-180
    • /
    • 1991
  • For the purpose of contributing to the promotion of health of the employees working at the same kind of department store or similar type of business and the people utilizing them and preparing the basic data for the establishment of mangagement measure by assessing the level of air pollusion at indoor and outodoor of four department store among the distribution service business in Pusan area, authors measured the concentration of sulfur dioxide, nitrogen dioxide, formaldehyde and total suspanded particle according to the measuring height of variable at indoor and outodoor from Aug. 1990. to sep. an. d Jan, 1991 to Feb.: for each two months in summer and winter, and studied by dividing the variable factor into atmospheric factor (temperature, humidity and air velociy) The results are as follows ; 1. The mean concentration of air pollutants at indoor to total subjects was nitrogen dioxide 31.1ppb, sulfur dioxide 51.7ppb, formaldehyde 162.lppb and total suspanded particle $67.7{\mu}g/m^3$, and it was higher in winter than in summer (P>0.05) 2. The mean concentration of formaldehyde to total subjects was higher indoors than outdoors (P<0.001), in case of nitrogen dioxide there was no significant difference and sulfur dioxide and total suspanded particle were higher outdoors than indoors (P<0.05) 3. The concentration of nitrogen dioxide and sulfur dioxide proved to be a adverse correlation, reducing with height. 4. According to the result questioned about the exposure concentration of pollutant and the general symptom caused by the pollutant, nitorgen dioxide and symptom proved to be a positive correlation (P<0.09).

  • PDF

Removal Characteristics of NOx Using a Mixed Soil-Biofilter (토양 혼합여재를 이용한 질소산화물 제거특성)

  • Cho, Ki-Chul;Sin, Eun-Sang;Hwang, Gyeong-Cheol;Cho, Il-Hyoung;Lee, Nae-Hyun;Yeo, Hyun-Gu
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.15-26
    • /
    • 2006
  • As traffic in city-centre around the world continues to increase, so levels of atmospheric pollutants continue to rise. High concentrations of NOx can have negative effects on human health, and we must find new ways to reduce their levels in the air we breathe. Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide $(NO_2)$ produced using $O_3$ oxidation, at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was carried out to evaluate the removal characteristics of NOx through a laboratory-scale biofilter packed with soil as a packing material. A mixture media (yellow soil (30%): soil (40%): compost (10%): a used briquet (20%)) was applied. After about 1day of operation, the removal efficiency for $NO_2$ in all experiments with a constant condition ($25^{\circ}C$ and water humidity (60%)) was over 98%. The retention times of the section between phase I and phase II for formation and reduction of $NO_3$ NO and $NO_2$ on the initial $NO_3$ concentration was 50min $(O_3:195\;ppb),\;55min\;(O_3:925\;ppb),\;65min\;(O_3:1743\;ppb),\;70min\;(O_3:2616\;ppb),\;75min\;(O_3:3500\;ppb)$, respectively The soil biofilter system is a unique technology that purifies urban air by utilizing the natural processes that take place in the soil. Although some of the processes are quite complex, they can broadly be summarized as adsorption onto soil particles, dissolution into soil pore water, and biochemical.

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

Environmental geochemistry of persistent organic pollutants in the Pearl River Delta

  • Peng Ping'an;Fu Jiamo;Sheng Guoying;Xiao Xianming;zhang Gan;Wang Xinming;Mai Bixian;Ran Rong;Cheng Fanzhong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.8-10
    • /
    • 2002
  • POPs in sediments and soil in the PRD are comparable to or much higher than those reported in other regions. Some sites may be classified as POPs- polluted with high ecological risks. Large-scale land transform in the process of regional urbanization may facilitate the transfer of POPs in the soil to the sedimentary system by enhancing the soil run-off. Urban atmospheric PCBs in PRD are found to be less than some of the North American or European urbans, but PAHs are significantly higher. The center of the PRD has been the major source area of PAHs and organochlorine pesticides in the PRD. The northern part of the PRD serves as a regional sink for the air particulates and affiliated POPs.

  • PDF

Comparison of Commuters' PM10 Exposure Using Different Transportation Modes of Bus and Bicycle (버스와 자전거를 이용한 통근 수단에 따른 PM10 노출량의 비교)

  • Kim, Won;Kim, Sung-Yeon;Lee, Ji-Yeon;Kim, Seong-Keun;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.447-453
    • /
    • 2009
  • Cycling has been lately recommended as an alternative commuting mode because it is believed to be good for health and the environment. However, the exposure to environmental pollutants, such as fine particulates, could be a potential problem for cycling in urban environments. In this study, we compared commuters' $PM_{10}$ exposure using the different transportation modes of bicycle and bus. When a bicycle was used as a commuting mode, the additional $PM_{10}$ exposure due to transportation was about 3.5 times higher than that when using a bus. The difference of additional $PM_{10}$ exposures by cycling and bus was statistically significant (p<0.01). The $PM_{10}$ exposure during cycling was significantly correlated with atmospheric $PM_{10}$ concentration (r=0.98, p<0.01) and its correlation coefficient was higher than that of bus (r=0.55, p<0.05). The results of this study demonstrated that the main reasons of higher $PM_{10}$ exposure when using the bicycle as the mode of transport were its vicinity to road traffic and routes that were unavoidably close to road traffic. Bicycle commuting along the road side may not be good for health. Exclusive bicycle lanes away from road traffic are recommended.

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF

A Study of the Travel Factors of Truck for the Low Emission Zone (차량 운행제한 지역 설정을 위한 화물자동차 통행요인 분석)

  • Hahn, Jin-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.492-498
    • /
    • 2021
  • This study examined how the emissions of pollutants affect the volume of traffic of freight vehicles in the transport sector. Multiple regression analysis was conducted considering several variables, including population by region, area of urban district, GDP, and the number of businesses by industry, e.g., agriculture, forestry, fishery, manufacturing, wholesale, and retail. These variables differ according to the characteristics of the freight vehicles (industry, by the ton). Therefore, it is essential to fully consider the volume of traffic of the specific freight vehicles by region before implementing relevant programs and policies, such as specific restrictions on the operation of vehicles. Some specific areas, in which logistic centers are located have heavy freight traffic, and these centers deserve extra consideration. Thus, in this study, different regional factors that affect the traffic of freight vehicles should be considered before determining the areas that will be subject to restrictions on the operation of these vehicles.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.