• Title/Summary/Keyword: atmospheric light

Search Result 369, Processing Time 0.028 seconds

Phase dependent disk averaged spectra and light curve of the Earth as an habitable exoplanet : Ray-tracing based simulation using 3D optical earth system model

  • Ryu, Dongok;Kim, Sug-Whan;Seong, Sehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.108.1-108.1
    • /
    • 2012
  • Previously we introduced ray-tracing based 3D optical earth system model for specular and scattering properties of all components of the system (i.e. clear-sky atmosphere, land surfaces and an ocean surface). In this study, we enhanced 3-dimensional atmospheric structure with vertical atmospheric profiles for multiple layer and cloud layers using Lambertian and Mie theory. Then the phase dependent disk averaged spectra are calculated. The main results, simulated phase dependent disk averaged spectra and light curves, are compared with the 7 bands(300~1000nm) light curves data of the Earth obtained from High Resolution Instrument(HRI) in Deep Impact spacecraft during Earth flyby in 2008. We note that the results are comparable with the observation.

  • PDF

Comparative Study on Photochemical Reactions of Aromatic Hydrocarbons in Indoor and Outdoor Smog Chambers (실내/외 스모그 챔버에서의 방향족계 탄화수소의 광화학 반응 비교 연구)

  • Dong Jong-In;Ahn Heung-Soon
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.231-240
    • /
    • 2005
  • The number of cases exceeding environmental standards of atmospheric ozone in the major cities in Korea has steadily increased during the past decades. In order to understand and analyze the atmospheric reactions in the atmosphere, especially the secondary photochemical reactions, smog chambers studies have been performed very actively by many research groups worldwide. However, these studies have focused on the mechanism of photochemical reactions in high concentration conditions, not at the ambient levels. Therefore, in-depth studies in these conditions are essentially needed to realize exact mechanism in the atmosphere near the earth surface, especially at Korean atmospheric conditions. In this experiment, the mechanism of photochemical smog was examined through a comparative experiment of smog chambers under sun light and black light conditions. The results of our study indicated that concentrations of ozone, aldehyde, and PAN increased as the radiation of light source increases. Photochemical reaction patterns can be considered quite similar for both black light and sun light experiments. Based on our experiments using toluene as a reactant which is present at significant high levels in ambient air relative to other VOCs, it was found that toluene could contribute notably to oxidize NO to $NO_2$, this reaction can eventually generate some other photochemical oxidants such as ozone, aldehyde, and PAN. The results of simulation and experiments generally showed a good agreement quite well except for the case of $O_3$. The restriction of oxidization of NO to $NO_2$ seems to cause this difference, which is mainly from the reaction of peroxy radical itself and other reactants in the real gas.

Factors Defining Store Atmospherics in Convenience Stores: An Analytical Study of Delhi Malls in India

  • Prashar, Sanjeev;Verma, Pranay;Parsad, Chandan;Vijay, T. Sai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.3
    • /
    • pp.5-15
    • /
    • 2015
  • This research paper has been attempted to inventory the atmospheric factors, contributing to better sales. Exploratory study was undertaken to identify various signs of store atmospherics variables that influence the buying behaviour of buyers. Thirty-four variables identified from this study were used to create a structured questionnaire. This questionnaire was then administered among shoppers in NCR Delhi using non-probability convenience sampling. To determine the atmospheric factors, Principal Component Analysis (PCA) along with Varimax Rotation was attempted. Using principal component factor analysis on the data collected, nine factors were identified to have impact on the store atmospheric. These were Querulous, Music, Sensitive, Budget Seeker, Sensuous, Light, Idler, Space seeker and Comfort Seeker. Contrary to the various earlier studies where music, space seeker and comfort seeker were considered to be most significant factors, light and querulous have emerged out to be the major factor that influences the store atmospheric. This study shows that customers are sensitive, space seekers and sensuous. Constituents of these factors reveal distinct patterns. This research may be used as guidelines for development and management of shopping malls in emerging countries. Retail marketers in India can take this cue in designing their strategies to attract consumers.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Characterization of Individual Atmospheric Particles, Collected in Susan, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis 분석법을 이용한 해안인근 지역의 대기입자 분석)

  • 김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2003
  • A single particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA) was applied to characterize atmospheric particles collected in Busan, Korea, over a daytime period in Dec. 2001. The ability to quantitatively analyze the low-Z elements, such as C, N, and 0, in microscopic volume enables the low-Z EPMA to specify the chemical composition of individual atmospheric particle. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, calcium carbonate, iron oxide, sodium chloride, sodium nitrate, ammonium sulfate, and titanium oxide were identified. In the sample collected in Busan, sodium nitrate particles produced as a result of the reaction between sea salt and nitrogen oxides in the atmosphere were most abundantly encountered both in the coarse and fine fractions. On the contrary, original sea salt particles were rarely observed. The fact that most of the carbonaceous particles were distributed in the fine fraction implies that their origin is anthropogenic.

Enhancement of Atmospherically Degraded Images Using Color Analysis (영상의 색상분석을 사용한 대기 열화 영상의 가시성 향상)

  • Yoon, In-Hye;Kim, Dong-Gyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • In this paper, we present an image enhancement method for atmospherically degraded images using atmospheric light and transmission based on color analysis. We first generate a normalized image using maximum value of each RGB color channel. Then, each atmospheric light is estimated from RGB color channel respectively by calculating reflectance of an image. We also, generate a transmission using gamma coefficients from the Y channel of the image. We can significantly enhance the visibility of an image by using the estimated atmospheric light and the transmission. The proposed algorithm can remove atmospheric degradation components better than existing techniques because the color prevents color distortion which is common problem of existing techniques. Experimental results demonstrate that the proposed algorithm can improve visibility be removing fog, smoke, and dust.

Photographic Observation and Reduction Technique by a Multiple-exposure Procedure (Multiple-exposure 방법에 의한 사진관측과 그 처리법)

  • Jeong, Jang-Hae
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.15-23
    • /
    • 1975
  • A new technique of photographic observations is developed for the determination of time of minimum light of eclipsing binary. An instrumental system to accomplish the observation is described. With this instrument the atmospheric extinction coefficients in Seoul are observed, and four times of minimum light for Algol and W UMa are determined.

  • PDF

RADIATIVE TRANSFER IN A SCATTERING SPHERICAL ATMOSPHERE

  • HONG S. S.;PARK Y.-S.;KWON S. M.;PARK C.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.41-57
    • /
    • 2002
  • We have written a code called QDM_sca, which numerically solves the problem of radiative transfer in an anisotropically scattering, spherical atmosphere. First we formulate the problem as a second order differential equation of a quasi-diffusion type. We then apply a three-point finite differencing to the resulting differential equation and transform it to a tri-diagonal system of simultaneous linear equations. After boundary conditions are implemented in the tri-diagonal system, the QDM_sca radiative code fixes the field of specific intensity at every point in the atmosphere. As an application example, we used the code to calculate the brightness of atmospheric diffuse light(ADL) as a function of zenith distance, which plays a pivotal role in reducing the zodiacal light brightness from night sky observations. On the basis of this ADL calculation, frequent uses of effective extinction optical depth have been fully justified in correcting the atmospheric extinction for such extended sources as zodiacal light, integrated starlight and diffuse galactic light. The code will be available on request.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.