• Title/Summary/Keyword: atmospheric environment factor

Search Result 356, Processing Time 0.028 seconds

Characteristics of PM Chemical Component during Haze Episode and Asian Dust at Gwang-ju (광주지역 고농도 및 황사 시의 미세먼지 화학적 성분 특성)

  • Lee, Yeong-Jae;Jung, Sun-A;Jo, Mi-Ra;Kim, Sun-Jung;Park, Mi-Kyung;Ahn, Joon-Young;Lyu, Young-Sook;Choi, Won-Jun;Hong, You-Deog;Han, Jin-Seok;Lim, Jae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.434-448
    • /
    • 2014
  • The aerosol characteristics between haze episode and Asian dust event were identified in January and March, 2013 in Gwang-ju of Korea to investigate the metal elements, ionic concentrations and carbonaceous particles of $PM_{2.5}$ and $PM_{10}$. In the haze episode, the concentrations were increased 1~3.2 times of ionic species and 1.6~2.7 of metal elements. Especially, the concentration of $NO{_3}{^-}$, $SO{_4}{^2-}$ and $NH{_4}{^+}$ consists of 50 percent in ionic species during haze episode that was higher than Asian dust event. This suggests that secondary aerosols from anthropogenic air pollution were mainly contributed by haze episode. During the Asian dust event, increase of metal concentrations was higher than haze episode because of remarkable increase of Ti, K and Fe originated from soil. The concentrations of carbonaceous particles were increased 2.5 times during haze episode, and 2.4 times of OC and 2.1 times of EC during Asian dust event in $PM_{2.5}$. However, these aerosol mass concentration does not affect the OC/EC ratio. The average equivalence ratios of cations/anions in $PM_{2.5}$ were 0.99 in haze episodes and 0.94 during non-event day. The neutralization factor of $NH_3$ was higher than that of $CaCO_3$. Futhermore, $NH{_4}{^+}$ aerosol was aged due to atmospheric stagnation that might be affected by the haze episode.

Study on the Growth Environment of 'Gangwha-mugwort' Through the Climatological Characteristic Analysis of Gangwha Region (강화지역의 기후특성 분석을 통한 '강화약쑥'의 생육 환경 연구)

  • Ahn, Joong-Bae;Hur, Ji-Na;Jung, Hae-Gon;Park, Jong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Eupatilin, one of representative medical components of mugwort, can be efficiently extracted from the 'Gangwha Sajabalssuk'. The Eupatilin content may depend on environmental factors such as soil and regional climate in addition to a genetic factor and Gangwha region has a profitable environmental condition for the mugwort growth. In this study, the climatological characteristics of Gangwha was analyzed in order to find the environmental condition of mugwort containing high Eupatilin in term of atmospheric, oceanographic and land variables. The climate of Gangwha is characterized by the relatively low daily temperature and large diurnal variation with plenty of solar radiation, long sunshine duration and less cloudiness. According to our correlation analysis, the long sunshine duration and the large diurnal temperature variation are highly correlated with the Eupatilin contents. The result implies that Gangwha has the favorable conditions for the cultivation and the habitat of the high-Eupatilin concentrated mugwort. Because of the sea surrounding Gangwha Island with low salinity and moderate wind, the salt contained in sea breeze is relatively low compared to other regions. Furthermore, Gangwha has clean atmospheric environment compared to other regions because the concentrations of toxic gases harmful to crop growth such as nitrogen dioxide ($NO_2$), sulfite gas ($SO_2$) and fine dust (PM-10) are lower in the air. The ozone ($O_3$) concentration is moderate and within the level of natural production. It is also found that moderately coarse texture or fine loamy soils known as good for water drainage and for the growth and cultivation of the 'Gangwha-mugwort' are distributed throughout the areas around mountainous districts in Gangwha, coinciding with those of mugwort habitat.

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.

A Direction of the Monitoring of Household Chemical Products in Aquatic Environments: The Necessities for a Trophic Magnification Factor (TMF) Research on Fish (다양한 수생태계에 적용 가능한 유해물질의 영양확대계수 (trophic magnification factor, TMF) 연구 - 생활화학제품에서 기인한 성분과 어류조사를 중심으로)

  • Eun-Ji Won;Ha-Eun Cho;Dokyun Kim;Seongjin Hong;Kyung-Hoon Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.185-200
    • /
    • 2022
  • The risk of various hazardous substances in aquatic environment comprises not only the concentration of substances in the environmental medium but also their accumulation in fish through complex food web and the health risks to humans through the fish. In Korea, the monitoring of residual toxicant in aquatic ecosystems began in 2016 following the enforcement of the Acts on registration and evaluation for the management of chemicals used in daily life (consumer chemical products), and attention has been paid to potentially hazardous substances attributed to them. Recently, studies have been carried out to investigate the distribution of these hazardous substances in the ecosystem and calculate their emission factors. These include the accumulation and transport of substances, such as detergents, dyes, fragrances, cosmetics, and disinfectants, within trophic levels. This study summarizes the results of recently published research on the inflow and distribution of hazardous substances from consumer chemical products to the aquatic environment and presents the scientific implication. Based on studies on aquatic environment monitoring techniques, this study suggests research directions for monitoring the residual concentration and distribution of harmful chemical substances in aquatic ecosystems. In particular, this study introduces the directions for research on trophic position analysis using compound specific isotope analysis and trophic magnification factors, which are needed to fulfill the contemporary requirements of selecting target fish based on the survey of major fish that inhabit domestic waters and assessment of associated health risk. In addition, this study provides suggestions for future biota monitoring and chemical research in Korea.

Corrosivity of Atmospheres in the Korean Peninsula

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 2011
  • The Korean Peninsula is located in the middle latitude of the northern hemisphere and has a clear 4-seasons and shows the typical temperate climate. Because of seasonal winds, it is cold and dry by a northwestern wind in the winter and it is hot and humid by a southeast wind in the summer. Also, temperature difference between the winter and the summer is large and it shows a rainy season from June to July but recently this regular trend may be greatly changed by an unusual weather phenomena. Since the Peninsula is east high west low type, the climate is complicated too. Because these geographical and climate characteristics can affect the properties of corrosion of metals and alloys, a systematic research on atmospheric corrosion in the Peninsula is required to understand and control the corrosion behavior of the industrial facilities. This paper analyzed the atmospheric corrosion factors for several environments in the Korean Peninsula and categorized the corrosivity of atmospheric corrosion of metals and alloys on the base of the related ISO standards. Annual pH values of rain showed the range of 4.5~5.5 in Korean Peninsula from 1999 to 2009 and coastal area showed relatively the low pH's rain. Annual $SO_2$ concentrations is reduced with time and its concentrations of every major cities were below the air quality standard, but $NO_2$concentration revealed a steady state and its concentration of Seoul has been over air quality standard. In 2007, $SO_2$classes of each sites were in $P_0{\sim}P_1$, and chloride classes were in $S_0{\sim}S_1$, and TOW classes were in ${\tau}_3{\sim}{\tau}_4$.That is, $SO_2$ and chloride classes were low but TOW class was high in Korean Peninsula. On the base of these environmental classes, corrosivity of carbon steel, zinc, copper, aluminium can be calculated that carbon steel was in C2-C3 classes and it was classified as low-medium, and zinc, copper, and aluminium showed C3 class and it was classified as medium.

Estimation of Ammonia Flux and Emission Factor from Cattle Housing Using Dynamic Flux Chamber (Dynamic Flux Chamber를 이용한 소사육시설의 암모니아 플럭스 및 배출계수 평가)

  • Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.33-43
    • /
    • 2010
  • Atmospheric ammonia is a very important constituent of the environment because it is the dominant alkaline gaseous species present in the atmosphere. Ammonia is known to affect ecosystems at relatively low concentration. In this study flux profiles of ammonia emitted from the cattle housing were evaluated using a dynamic flux chamber (DFC). We have developed the emission factor of $NH_3$ from the cattle housing. Analysis of ammonia flux variation was made with respect to such variables as manure surface temperature, pH, and ammonium concentration. Ammonia flux has been measured up to summer in 2007 at calf and cattle housing. In the fall, average ammonia flux from calf and cattle housing was estimated as 1.406 (${\pm}0.947$) and 1.534 ((${\pm}0.956$) $mg\;m^2\;min^1$, respectively. In the winter, average ammonia flux was estimated 1.060 ((${\pm}0.569$) from the calf housing and 1.216 ((${\pm}0.655$) $mg\;m^2\;min^1$ from the cattle housing. The correlation coefficient (R=0.732) between ammonia flux and manure surface ammonium concentration exhibited stronger relationship than manure surface pH and temperature. In the fall, ammonia emission factor from calf and cattle housing was estimated as 3.94 ((${\pm}2.66$) and 11.41 ((${\pm}5.86$) kg-$NH_3$ animal$^1\;yr^1$, respectively. In the winter, ammonia average flux was estimated as 2.89 ((${\pm}1.59$) from the calf housing and 6.51 ((${\pm}3.67$) kg-$NH_3$ animal$^1\;yr^1$ from the cattle housing.

An Evaluation of the Repetitive Tooth Bleaching with Nonthermal Atmospheric Pressure Plasma

  • Nam, Seoul Hee;Kim, Gyoo Cheon;Hong, Jin Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • This study was undertaken to achieve a high bleaching efficacy with plasma, through longer application and reparative bleaching processes, by different shade evaluation methods. Extracted human teeth were divided into 6 groups (n=10). All teeth were treated in pairs. Low concentration of 15% carbamide peroxide (CP) was applied, with and without plasma, for 10, 20, and 30-min tooth bleaching, respectively. The bleaching procedure was repeated once daily for four days. The teeth were maintained in a moist environment provided by artificial saliva. The Vitapan Classical shade guide and Commission Internationale de L'Eclairage (CIELAB) color system were collectively used to measure the bleaching efficacy. Color evaluation was statistically analyzed using Student t-test and one-way analysis of variance (ANOVA) complemented by Tukey's test. Combining the plasma with 15% CP showed significantly greater color changes compared to bleaching without plasma (p<0.05). A high bleaching efficacy with plasma is proportional to the repetitive application and the treatment time. A 30-min application with plasma provided the best bleaching. Repetitive bleaching showed lower probability of color relapse of the bleached tooth. The color change by shade guide correlated with the changes in CIELAB color system. A value of 1 color change units (CCU) conversion factor for overall color change (${\Delta}E$) values comparisons was 3.724 values. The two measuring methods provide a more accurate correspondence of color change. The repetitive and longer application for tooth bleaching, combined with plasma, has a strong bleaching effect and produces whiter teeth.

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

A Study on Calculation of Air Pollutants Emission Factors for Construction Equipment (건설기게의 대기오염물질 배출계수 산정을 위한 연구)

  • lim, Jae-Hyun;Jung, Sung-Woon;Lee, Tae-Woo;Kim, Jong-Choon;Seo, Chung-Youl;Ryu, Jung-Ho;Hwang, Jin-Woo;Kim, Sun-Moon;Eom, Dong-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.188-195
    • /
    • 2009
  • Generally. mobile sources of air pollution were classified in on-road and non-road. Due to increased registration number of construction equipment in Korea. updated emission factors for non-road mobile sources, such as construction machinery. should be developed. NONROAD model of U.S. EPA already has introduced transient adjustment factors and sulfur adjustment factors for emission factors of diesel powered engine. In addition to this. European Environment Agency (EEA) has proposed emission factors for off-road machinery including several types of construction equipment. In this study. six types of construction equipment, such as excavator. forklift, loader, crane, roller and bulldozer, were studied to estimate emission factors based on total registration status in Korea. Total 445 construction equipments between 2004 and 2007 model year were tested with KC1-8 mode and air pollutants (CO, THC, $NO_x$, and PM) were measured. After statistical estimation and calculation, emission factors for CO, THC, $NO_x$, and PM for excavator, forklift, loader, crane, roller and bulldozer were provided and compared with previous emission factors. Moreover, updated emission factors for six types of construction equipment in this study were verified after comparison with emission factors of U.S. EPA. Finally, estimated emission amounts of four air pollutants were suggested according to six types of construction equipment.

Quantitative Estimation of Precipitation Scavenging and Wind Dispersion Contributions for PM10 and NO2 Using Long-term Air and Weather Monitoring Database during 2000~2009 in Korea (장기간 대기오염 및 기상측정 자료 (2000~2009)를 이용한 PM10과 NO2의 강수세정 기여율과 바람분산 기여율의 정량적 추정연구)

  • Lim, Deuk-Yong;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.325-347
    • /
    • 2012
  • Long-term air and weather data monitored during the period of 2000 to 2009 were analyzed to quantitatively estimate the precipitation scavenging and wind dispersion contributions of ambient $PM_{10}$ and $NO_2$ in Korea. Both air pollutants and meteorological data had been respectively collected from 120 stations by the Ministry of Environment and from 20 weather stations by the Korea Meteorological Administrations in all parts of Korea. To stochastically identify the relation between a meteorological factor and an air pollutant, we initially defined the SR (scavenging ratio) and the DR (dispersion ratio) to separately calculate the precipitation and wind speed effects on the removal of a specific air pollutant. We could then estimate the OSC (overall scavenging contribution) and the ODC (overall dispersion contribution) with considering sectoral precipitation and wind speed probability density distributions independently. In this study, the SRs for both $PM_{10}$ and $NO_2$ were generally increased with increasing the amounts of precipitation and then the OSCs for $PM_{10}$ and $NO_2$ were estimated by 22.3% and 15.7% on an average in Korea, respectively. However, the trend of the DR was quite different from that of SR. The DR for $PM_{10}$ was increased with increasing wind speed up to 2.5 m/s and further the DR for $NO_2$ showed a minimum in the range of $1<WS{\leq}1.5$. The ODCs for $PM_{10}$ and $NO_2$ were estimated by 14.9% and 1.0% in Korea, respectively. Finally, we have also provided an interesting case study observed in Seoul.