• Title/Summary/Keyword: ata synchronization

Search Result 2, Processing Time 0.016 seconds

The Method of Data Synchronization Among Devices for Personal Cloud Services (퍼스널 클라우드 서비스를 위한 임의의 단말간 컨텐츠 동기화 방법)

  • Choi, Eunjeong;Lee, Jeunwoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.377-382
    • /
    • 2011
  • This paper describes the method of data synchronization among devices for personal cloud services. Existing data synchronization for mobile devices is based on a central server to mobile devices or a PC to a mobile device. However, the purpose of this paper is to share user data in heterogeneous environments, without depending on central server. This technology can be applied to synchronize personal data between a device and a personal cloud storage for personal cloud services. The ad hoc synchronization needs a sync agent service discovery module, a user authentication module, a network adapter, and an application data synchronization module. The method described in this paper is better than existing synchronization technology based on client-server in availability, performance, scalability quality attributes.

Dynamic Load Balancing and Network Adaptive Virtual Storage Service for Mobile Appliances

  • Ong, Ivy;Lim, Hyo-Taek
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2011
  • With the steady growth of mobile technology and applications, demand for more storage in mobile devices has also increased. A lightweight block-level protocol, Internet Advanced Technology Attachment (iATA), has been developed to deliver a cost-effective storage network solution for mobile devices to obtain more storage. This paper seeks to contribute to designing and implementing Load Balancing (LB), Network Monitoring (NM) and Write Replication (WR) modules to improve the protocol's scalability and data availability. LB and NM modules are invoked to collect system resources states and current network status at each associate node (server machine). A dynamic weight factor is calculated based on the collected information and sent to a referral server. The referral server is responsible to analyze and allocate the most ideal node with the least weight to serve the client. With this approach, the client can avoid connecting to a heavily loaded node that may cause delays in subsequent in-band I/O operations. Write replication is applied to the remaining nodes through a WR module by utilizing the Unison file synchronization program. A client initially connected to node IP A for write operations will have no hindrances in executing the relevant read operations at node IP B in new connections. In the worst case scenario of a node crashing, data remain recoverable from other functioning nodes. We have conducted several benchmark tests and our results are evaluated and verified in a later section.