• Title/Summary/Keyword: asymptotic waveform evaluation (AWE) technique

Search Result 2, Processing Time 0.016 seconds

Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong Bae;Kim, Youn-Jae;Yook, Jong-Gwan
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.561-572
    • /
    • 2014
  • In this paper, we present the scattering characteristics of infinite and finite array using method of moment (MoM) with Floquet harmonics and asymptotic waveform evaluation (AWE) technique. First, infinite cylindrical dipole array is analyzed using the MoM with entire domain basis function and cylindrical Floquet harmonics. To provide the validity of results, we fabricated the cylindrical dipole array and measured the transmission characteristics. The results show good agreements. Second, we analyzed the scattering characteristics of finite array. A large simulation time is needed to obtain the scattering characteristics of finite array over wide frequency range because Floquet harmonics can't be applied. So, we used the MoM with AWE technique using Taylor series and Pade approximation to overcome the shortcomings of conventional MoM. We calculated the radar cross section (RCS) as scattering characteristics using the proposed method in this paper and the conventional MoM for finite planar slot array, finite spherical slot array, and finite cylindrical dipole array, respectively. The compared results agree well and show that the proposed method in this paper is good for electromagnetic analysis of finite FSS.

An Analytic Calculation Method for Delay Time of RC-class Interconnects (RC-class 회로 연결선의 지연 시간 계산을 위한 해석적 기법)

  • Kal, Won-Kwang;Kim, Seok-Yoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents an analytic 3rd order calculation methods, without simulations, for delay time of RC-class circuits which are conveniently used to on-chip interconnects. While the proposed method requires comparable evaluation time than the previous 2nd order calculation method, it ensures more accurate results than those of 2nd order method. The proposed analytic delay calculation method guarantees allowable error tolerances when compared to the results obtained from the AWE (Asymptotic Waveform Evaluation) technique and has better performance in evaluation time as well as numerical stability. The first algorithm of the proposed method requires 8 moments for the 3rd order approximation and yields more accurate delay time approximation. The second algorithm requires 6 moments for the 3rd order approximation and results in shorter evaluation time, the accuracy of which may be less than the first algorithm.

  • PDF