• Title/Summary/Keyword: asymmetric-plan structures

Search Result 24, Processing Time 0.017 seconds

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.