• Title/Summary/Keyword: asymmetric multi-storey buildings

Search Result 3, Processing Time 0.016 seconds

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

Simplified finite element modelling of non uniform tall building structures comprising wall and frame assemblies including P-Δ effects

  • Belhadj, Abdesselem Hichem;Meftah, Sid Ahmed
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.253-273
    • /
    • 2015
  • The current investigation has been conducted to examine the effect of gravity loads on the seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The proposed model includes the P-${\Delta}$ effects induced by the building weight. Based on the variational approach, a 3D finite element with two nodes and six DOF per node including P-${\Delta}$ effects is formulated. Dynamic and static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame systems. The influences of P-${\Delta}$ effects and height of the building on tip displacements under Hachinohe earthquake record are investigated through many structural examples.