• Title/Summary/Keyword: asymmetric fold

Search Result 24, Processing Time 0.018 seconds

Two Possible Space Groups of Ttis(tekaethylammonium) [bis(trimetaphosphate $\kappa^3O, O^', O^{"}$)] Vanadate(3-),$[V(P_3O_9)_2](NC_8H_{20})3$ (Tris(tetraethylammnnium) [bis(trimetaphosphate $\kappa^3O, O^', O^{"}$)] Vamdate(3-),$[V(P_3O_9)_2](NC_8H_{20})_3$,의 두가지 가능한 공간군)

  • 서일환;이진호
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Two possible space groups of the comfound, VP6N3018C24H:60, are: P 1, a=14.022(1), b=12.644(2), c= 12.640(1)A, a=8038(1), B=102.12(1), r=102.16(1), V=2124.1A3, Z=2, μ=0.47cm-1, d=1.46g/cm3, R=0.083 for 3350 independent reflections with Fo>4o IFI, and C2/c, a=19.32(2), b=16.32(2), c=14.02(1)A, B=105.98(5), β=105.98(5), V=4248.2A3, Z=4 R=0.083 for 1590 independent reflections with Fo>4c IFoI . In the space group P T, there are two monlecules in a unit cell. Vanadium atoms in the two monlecules occupy the two different special positions such that the complete monlecules are accomplished by the two independent center of symmetry. Therefore two different half molecules of bis(trimetaphosphate)vanadate and three molecules of tetraethylammonium are the asymmetric unit in a unit cell. In the space group C2/c, however, the vanadium atom is located at a special position with centrosymmetry, and a two-fold symmetry axis passes through C2/c, N2 and C25 atoms. Therefore the asymmrtic unit in a unit cell consists of a half molecule of bis(trimetaphosphate)vanadate and one and a half molecules of tetraethylammonium. All the molecular conformations in both space groups are very similar: six oxygen atoms coordinated to a vanadium atom in the bi s(trimetaphosphate)vanadate molecule form an octahedron and the four carbon atoms bonded to a nitrogen atom in the tetraethylammonium molecule are disordered so that the eight carbon atoms around nitrogen atom exhibit an irregular dodecahedral form.

  • PDF

Structural Analysis of the North Sobaegsan Massif in the Sangun-myeon area, Bonghwa-gun, Korea (봉화군 상운면지역에서 북부 소백산육괴의 지질구조 해석)

  • 강지훈;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.254-270
    • /
    • 2000
  • To clarify the geological structure of North Sobaegsan Massif in the Sangunmyeon area, Bonghwagun, Korea, where the Yecheon Shear Zone passes and the NE-SW and E-W trending structural lineaments are developed, the rock-structures of its main constituent rocks(Precambrian Won-nam Formation and Mesozoic Hornblende Granite) were examined. In this area, the geological structure was formed at least by four phases of deformation after the formation of gneissosity or schistosity of the Wonnam Formation: one deformation before D2 ductile shearing related to the for-mation of the Yecheon Shear Zone and two deformations after that. The NE-SW and E-W trending structural lineaments were formed by a giant open or gentle type of F4 fold, and their trends before D4 deformation are interpreted to be parallel to the orientation(ENE-WSW trend) of folded surface in the F4 hinge zone. The structural features of Dl-D3 deformations and their relative occurrence times are as follows. Dl deformation is formative period of the boudin structures and ENE-WSW trending isoclinal folds with sub-horizontal hinge lines and steeply inclined axial surfaces. D2 deformation is that of the mylonite foliation, stretching lineation and Z-shaped asymmetric folds related to top-to-the ENE dextral strike-slip shearing on the distinct foliations of Wonnam Formation(after intrusion of Mesozoic Hornblende Granite). D3 deformation is that of the ENE trending S-shaped asymmetric folds with sub-horizontal hinge lines and axial surfaces related to normal-slip shearing on the distinct foliations. It is expected that the result will be contributed to as valuable data for interpreting the tectonic evolution of the North Sobaegsan Massif and the Northeast Ogcheon Belt whose tectonic lineaments are changed from NE-SW to E-W trends at the Sindong-Bonghwa line.

  • PDF

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Cooperative Sales Promotion in Manufacturer-Retailer Channel under Unplanned Buying Potential (비계획구매를 고려한 제조업체와 유통업체의 판매촉진 비용 분담)

  • Kim, Hyun Sik
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.29-53
    • /
    • 2012
  • As so many marketers get to use diverse sales promotion methods, manufacturer and retailer in a channel often use them too. In this context, diverse issues on sales promotion management arise. One of them is the issue of unplanned buying. Consumers' unplanned buying is clearly better off for the retailer but not for manufacturer. This asymmetric influence of unplanned buying should be dealt with prudently because of its possibility of provocation of channel conflict. However, there have been scarce studies on the sales promotion management strategy considering the unplanned buying and its asymmetric effect on retailer and manufacturer. In this paper, we try to find a better way for a manufacturer in a channel to promote performance through the retailer's sales promotion efforts when there is potential of unplanned buying effect. We investigate via game-theoretic modeling what is the optimal cost sharing level between the manufacturer and retailer when there is unplanned buying effect. We investigated following issues about the topic as follows: (1) What structure of cost sharing mechanism should the manufacturer and retailer in a channel choose when unplanned buying effect is strong (or weak)? (2) How much payoff could the manufacturer and retailer in a channel get when unplanned buying effect is strong (or weak)? We focus on the impact of unplanned buying effect on the optimal cost sharing mechanism for sales promotions between a manufacturer and a retailer in a same channel. So we consider two players in the game, a manufacturer and a retailer who are interacting in a same distribution channel. The model is of complete information game type. In the model, the manufacturer is the Stackelberg leader and the retailer is the follower. Variables in the model are as following table. Manufacturer's objective function in the basic game is as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. And retailer's is as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+p_u(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. The model is of four stages in two periods. Stages of the game are as follows. (Stage 1) Manufacturer sets wholesale price of the first period($w_1$) and cost sharing level of channel sales promotion(${\Psi}$). (Stage 2) Retailer sets retail price of the focal brand($p_1$), the unplanned buying item($p_u$), and sales promotion level(L). (Stage 3) Manufacturer sets wholesale price of the second period($w_2$). (Stage 4) Retailer sets retail price of the second period($p_2$). Since the model is a kind of dynamic games, we try to find a subgame perfect equilibrium to derive some theoretical and managerial implications. In order to obtain the subgame perfect equilibrium, we use the backward induction method. In using backward induction approach, we solve the problems backward from stage 4 to stage 1. By completely knowing follower's optimal reaction to the leader's potential actions, we can fold the game tree backward. Equilibrium of each variable in the basic game is as following table. We conducted more analysis of additional game about diverse cost level of manufacturer. Manufacturer's objective function in the additional game is same with that of the basic game as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. But retailer's objective function is different from that of the basic game as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+(p_u-c)(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. Equilibrium of each variable in this additional game is as following table. Major findings of the current study are as follows: (1) As the unplanned buying effect gets stronger, manufacturer and retailer had better increase the cost for sales promotion. (2) As the unplanned buying effect gets stronger, manufacturer had better decrease the cost sharing portion of total cost for sales promotion. (3) Manufacturer's profit is increasing function of the unplanned buying effect. (4) All results of (1),(2),(3) are alleviated by the increase of retailer's procurement cost to acquire unplanned buying items. The authors discuss the implications of those results for the marketers in manufacturers or retailers. The current study firstly suggests some managerial implications for the manufacturer how to share the sales promotion cost with the retailer in a channel to the high or low level of the consumers' unplanned buying potential.

  • PDF