• 제목/요약/키워드: astronomy and space science

검색결과 4,856건 처리시간 0.029초

Status Report of Korean Large Telescope Project

  • Park, Byeong-Gon;Kim, Sang-Chul;Kim, Young-Soo;Kim, Ho-Il;Sung, Hyun-Il;Ahn, Sang-Hyun;Yuk, In-Soo;Lyo, A-Ran;Lee, Dong-Wook;Lee, Sung-Ho;Chun, Moo-Young;Han, Jeong-Yeol
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.36.4-37
    • /
    • 2008
  • KASI is planning a large telescope project to acquire 10% share of the GMT (Giant Magellan Telescope) extremely large telescope as one of national R&D project. By participating in GMT, we expect to provide the best environment for observational astronomers in Korea and give opportunity to upgrade the current research and instrumentation level to world-leading class. In this contribution, we will report the concept of the GMT project and Korean participation plan as well as the current status of fundraising activity.

  • PDF

OPTICAL SURVEY WITH KMTNET FOR DUSTY STAR-FORMING GALAXIES IN THE AKARI DEEP FIELD SOUTH

  • JEONG, WOONG-SEOB;KO, KYEONGYEON;KIM, MINJIN;KO, JONGWAN;KIM, SAM;PYO, JEONGHYUN;KIM, SEONG JIN;KIM, TAEHYUN;SEO, HYUN JONG;PARK, WON-KEE;PARK, SUNG-JOON;KIM, MIN GYU;KIM, DONG JIN;CHA, SANG-MOK;LEE, YONGSEOK;LEE, CHUNG-UK;KIM, SEUNG-LEE;MATSUURA, SHUJI;PEARSON, CHRIS;MATSUHARA, HIDEO
    • 천문학회지
    • /
    • 제49권5호
    • /
    • pp.225-232
    • /
    • 2016
  • We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (~4 deg2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is ~24 mag (AB) at 5σ, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dust-obscured galaxy, sub-millimeter galaxy at high redshift.

Conceptual Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Matsumoto, Toshio;Takeyama, Norihide;Enokuchi, Akito;Shin, Goo-Whan;Chae, Jangsoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.83-90
    • /
    • 2014
  • The NISS onboard NEXTSat-1 is being developed by Korea astronomy and space science institute (KASI). For the study of the cosmic star formation history, the NISS performs the imaging spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on. It is designed to cover a wide field of view ($2{\times}2$ deg) and a wide wavelength range from 0.95 to $3.8{\mu}m$ by using linear variable filters. In order to reduce the thermal noise, the telescope and the infrared sensor are cooled down to 200 K and 80 K, respectively. Evading a stray light outside the field of view and making the most use of limited space, the NISS adopts the off-axis reflective optical system. The primary and the secondary mirrors, the opto-mechanical part and the mechanical structure are designed to be made of aluminum material. It reduces the degradation of optical performance due to a thermal variation. This paper presents the study on the conceptual design of the NISS.

BITSE Preliminary Results

  • Bong, Su-Chan;Yang, Heesu;Lee, Jae-Ok;Kim, Yeon-Han;Cho, Kyung-Suk;Choi, Seonghwan;Baek, Ji-Hye;Park, Jongyeob;Kim, Jihun;Park, Young-Deuk;Kim, Rok-Soon;Lim, Eun-Kyung;Yashiro, Seiji;Makela, Pertti A.;Reginald, Nelson L.;Thakur, Neeharika;Gopalswamy, Natchimuthuk;Newmark, Jeffrey S.;Gong, Qian
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.60.1-60.1
    • /
    • 2021
  • The Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) is a technology demonstration mission launched in 2019 to observe the solar corona from ~3 Rs to 15 Rs at four wavelengths (393.5, 405.0, 398.7, and 423.4 nm). Preliminary analysis shows that BITSE imaged the solar minimum corona with the equatorial streamers on the east and west limbs. The narrow streamers observed by BITSE are in good agreement with the geometric properties obtained by the Solar and Heliospheric Observatory (SOHO) coronagraphs in the overlapping physical domain. In spite of the small signal-to-noise ratio we were able to obtain the temperature and flow speed of the western steamer. In the heliocentric distance range 4 - 7 Rs on the western streamer, we obtained a temperature of ~ 1.0 ± 0.3 MK and a flow speed of ~ 260 km s-1 with a large uncertainty interval.

  • PDF

30cm Wide-Field Solar Spectro-Imaging Telescope (Post SOFT)

  • Yang, Heesu;Choi, Seonghwan;Lim, Eun-Kyung;Kim, Jihun;Park, Jongyeob;Baek, Ji-Hye;Cho, Kyung-Suk;Kim, Yeon-Han;Jang, Bi-Ho;Kwon, Ryun-Young;Kim, Rok-Soon;Kim, Sujin;Park, Yeong-Deuk;Bong, Suchan;Seough, Jungjoon;Kwak, Young-Sil
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.69.3-69.3
    • /
    • 2020
  • 우주개발과 활용이 주요 화두가 된 현대에 보다 빠르고 정확한 우주환경 예보는 전략적으로 매우 중요하다. 이에 우리는 광대역태양영상분광망원경(Wide-Field Solar Spectro-Imaging Telescope, Post SOlar Flare Telescope: PSOFT)을 활용한 태양전면 영상분광감시체계를 구성하고자 한다. 전세계 세 곳에 PSOFT를 배치하여 우주환경에 중대한 영향을 주는 요소인 태양의 플레어와 홍염 분출과 같은 현상과 표면의 다양한 활동들을 실시간으로 관측 분석하고자 한다. PSOFT는 30cm 구경의 광학계에 고속영상분광기를 결합하여 태양 전면의 분광영상을 약 1초각의 영상해상도와 5분의 시간해상도로 획득한다. 태양 전면을 슬릿으로 스캔하는 방식으로 H alpha와 Ca II 854.2nm선의 분광정보를 획득하는데 팁틸트 미러를 이용하여 1차적인 시상보정과 함께 스캔모션을 함께 구현함으로써 1)광학계 구조를 단순화하고, 2) 빠른 스캔이 가능하다. PSOFT로 얻은 태양전면 채층분광영상 데이터는 정밀한 우주환경 예보에 필요한 플레어나 홍염분출의 발생초기 정보를 제공할 뿐 아니라 태양 저층대기에서 발생하는 자기재연결, 파동 등에 대한 통계적 연구자료를 제공할 것으로 기대한다.

  • PDF

Performance Analysis of the First Korean Satellite Laser Ranging System

  • Choi, Man-Soo;Lim, Hyung-Chul;Choi, Eun-Jung;Park, Eunseo;Yu, Sung-Yeol;Bang, Seong-Cheol;Kim, Tae-Keun;Kim, Young-Rok;Kim, Dong-Jin;Seong, Kipyung;Ka, Neung-Hyun;Choi, Cer-Hee;Hwang, Joo-Yeon;Kucharski, Daniel;Han, In-Woo;Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Lee, Sang-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권3호
    • /
    • pp.225-233
    • /
    • 2014
  • The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the $25^{th}$ country that operates SLR system supplementing the international laser tracking network. The DAEK station is designed to be capable of 2 kHz laser ranging with precision of a few mm both in daytime and nighttime observation of satellites with laser retro-reflector array (LRA) up to the altitude of 25,000 km. In this study, characteristics and specifications of DAEK station are investigated and its data quality is evaluated and compared with International Laser Ranging Service (ILRS) stations in terms of single-shot ranging precision. The analysis results demonstrated that the DAEK station shows good ranging performance to a few mm precision. Currently, the DAEK station is under normal operations at KASI headquarters, however, it will be moved to Sejong city in 2014 to function as a fundamental station for space geodesy researches in combination with other space geodesy systems (GNSS, VLBI, DORIS, etc.).

The Design Concept of the First Mobile Satellite Laser Ranging System (ARGO-M) in Korea

  • Jo, Jung-Hyun;Park, In-Kwan;Lim, Hyung-Chul;Seo, Yoon-Kyoung;Yim, Hong-Seo;Lee, Jin-Young;Bang, Seung-Cheol;Nah, Ja-Kyoung;Kim, Kwang-Dong;Jang, Jeong-Gyun;Jang, Bi-Ho;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.93-102
    • /
    • 2011
  • Korea Astronomy and Space Science Institute (KASI) launched the development project of two satellite laser ranging (SLR) systems in early 2008 after the government fund approval of the SLR systems in 2007. One mobile SLR system and one permanent SLR station will be developed with the completion of the project. The main objectives of these systems will be focused on the Space Geodetic researches. A system requirement review was held in the second half of the same year. Through the following system design review meeting and other design reviews, many unsolved technical and engineering issues would be discussed and resolved. However, the design of the mobile SLR system is a corner stone of whole project. The noticeable characteristics of Korea's first SLR system are 1) use of light weight main mirror, 2) design of compact optical assembly, 3) use of KHz laser pulse, 4) use of commercial laser generator, 5) remote operation capability, 6) automatic tracking, 7) state of art operation system, etc. In this paper, the major user requirement and pre-defined specification are presented and discussed.