• Title/Summary/Keyword: astronomical systems thinking

Search Result 4, Processing Time 0.016 seconds

Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking (달의 위상 변화에 대한 초등학교 6학년 학생들의 학습 발달과정 탐색: 천문학적 시스템 사고를 중심으로)

  • Oh, Hyunseok;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.103-116
    • /
    • 2018
  • The purpose of this study was to explore $6^{th}$ graders learning progression for lunar phase change focusing astronomical systems thinking. By analyzing the results of previous studies, we developed the constructed-response items, set up the hypothetical learning progressions, and developed the item analysis framework based on the hypothetical learning progressions. Before and after the instruction on the lunar phase change, we collected test data using the constructed-response items. The results of the assessment were used to validate the hypothetical learning progression. Through this, we were able to explore the learning progression of the earth-moon system in a bottom-up. As a result of the study, elementary students seemed to have difficulty in the transformation between the earth-based perspective and the space-based perspective. In addition, based on the elementary school students' learning progression on lunar phase change, we concluded that the concept of the lunar phase change was a bit difficult for elementary students to learn in elementary science curriculum.

An Analysis of Systems Thinking Revealed in Middle School Astronomy Classes: The Case of Science Teachers' Teaching Practices for the Unit of Stars and Universe (중학교 과학 천문 수업에서 나타나는 시스템 사고 분석: 별과 우주 단원에 대한 과학 교사의 교수 실행 사례)

  • Oh, Hyunseok;Lee, Kiyoung;Park, Young-Shin;Maeng, Seungho;Lee, Jeong-A
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.591-608
    • /
    • 2015
  • The purpose of this study was to analyze system thinking revealed in science teachers' teaching practices of middle school astronomy classes. Astronomy lessons were video-taped from four eighth grade science teachers. The video recordings were all transcribed and analyzed by employing a framework for systems thinking analysis after modifying an existing frame of hierarchial structure used in relevant previous studies. In addition, four participants were interviewed in order to uncover their orientation toward teaching using video stimulated recall method. Findings are as follows: All participating teachers were not able to employ the four levels of system thinking appropriately and only utilized the low level of systems thinking. They also demonstrated teacher-centered practices for employing system thinking despite their student-centered orientation toward teaching. The main reason for these results may be that teachers focused more on spatial thinking, than on system thinking as well as the lack of teacher's knowledge about the content and formative assessment of non-earth science teachers. Implications on how to effectively employ the system thinking in astronomy class are discussed in this paper.

Development and Validation of a Learning Progression for Astronomical Systems Using Ordered Multiple-Choice Items (순위 선다형 문항을 이용한 천문 시스템 학습 발달과정 개발 및 타당화 연구)

  • Maeng, Seungho;Lee, Kiyoung;Park, Young-Shin;Lee, Jeong-A;Oh, Hyunseok
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.8
    • /
    • pp.703-718
    • /
    • 2014
  • This study sought to investigate learning progressions for astronomical systems which synthesized the motion and structure of Earth, Earth-Moon system, solar system, and the universe. For this purpose we developed ordered multiple-choice items, applied them to elementary and middle school students, and provided validity evidence based on the consequence of assessment for interpretation of learning progressions. The study was conducted according to construct modeling approach. The results showed that the OMCs were appropriate for investigating learning progressions on astronomical systems, i.e., based on item fit analysis, students' responses to items were consistent with the measurement of Rasch model. Wright map analysis also represented that the assessment items were very effective in examining students' hypothetical pathways of development of understanding astronomical systems. At the lower anchor of the learning progression, while students perceived the change of location and direction of celestial bodies with only two-dimensional earth-based view, they failed to connect the locations of celestial bodies with Earth-Moon system model, and they could recognized simple patterns of planets in the solar system and milky way. At the intermediate levels, students interpreted celestial motion using the model of Earth rotation and revolution, Earth-Moon system, and solar system with space-based view, and they could also relate the elements of astronomical structures with the models. At the upper anchor, students showed the perspective change between space-based view and earth-based view, and applied it to celestial motion of astronomical systems, and they understood the correlation among sub-elements of astronomical systems and applied it to the system model.

Exploring Topic-Specific PCK Progression for Elementary Teachers Instruction of Astronomy: Focusing on the Topic of Planet Size and Distance in Solar System (천문 수업에 대한 초등 교사의 주제-특이적 PCK 발달과정 탐색 -태양계 행성의 크기와 거리 주제를 중심으로-)

  • Lee, Kiyoung;Lee, Jeong-A
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.629-641
    • /
    • 2016
  • Understanding of how teachers change instruction can help predict what kind of educational materials is supportive or appropriate. On the basis of this idea, we explored elementary teachers' PCK progression on specific topics of astronomy: planet size and distance in solar system. To identify the development of PCK over time, we utilized learning progression (LP) as a conceptual framework. The progression of teacher PCK can also be illustrated as the hypothetical pathway from novice to expert like LP. Eight 5th grade elementary teachers participated in this study. We observed participating teachers' astronomy classes with the same topic. In order to document topic-specific PCK of participating teachers, we developed an analytic protocol consisting of four categories: knowledge of curriculum, knowledge of teaching strategies, knowledge of assessment, and astronomical thinking practice. In addition, we monitored the changes in the four participating teachers' PCK for two years in order to validate the evidences of the PCK progression. Participating teachers in this study took some intervention by attending a four-week pre-meeting with the researchers to profile an adaptive instruction. Through this research, we profiled four and five different levels of PCK progressions in three knowledge components (curriculum, teaching strategies, student assessment) and one astronomical thinking practice (systems thinking), respectively. Participating teachers demonstrated various levels and pathways in each component of PCK. This study released the empirical evidences in fostering instructional scaffolding, which is appropriate to the level of PCK of science teachers on specific topic.