• Title/Summary/Keyword: astronomical record

검색결과 36건 처리시간 0.023초

PERFORMANCE OF THE AUTOREGRESSIVE METHOD IN LONG-TERM PREDICTION OF SUNSPOT NUMBER

  • Chae, Jongchul;Kim, Yeon Han
    • Journal of The Korean Astronomical Society
    • /
    • 제50권2호
    • /
    • pp.21-27
    • /
    • 2017
  • The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.

A DEVELOPMENT HISTORY AND STRUCTURAL FEATURE OF SOGYUPYO IN THE JOSEON DYNASTY (조선시대 소규표(小圭表)의 개발 역사와 구조적 특징)

  • Mihn, B.H.;Kim, S.H.;Lee, K.W.;Ahn, Y.S.;Lee, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • 제26권3호
    • /
    • pp.129-140
    • /
    • 2011
  • In this paper, we have studied Sogyupyo (小圭表, small noon gnomon) of the Joseon dynasty. According to the Veritable Records of King Sejong (世宗, 1418 - 1450), Daegyupyo (大圭表, large noon gnomon) with a height of 40-feet [尺] was constructed by Jeong, Cho (鄭招) and his colleagues in 1435, and installed around Ganuidae (簡儀臺, platform of Ganui). On the contrary, the details of Sogyupyo are unknown although the shadow length measurements by Daegyupyo and Sogyupyo are found on the Veritable Records of King Myeongjong (明宗, 1545 - 1567). By analysing historical documents and performing experiments, we have investigated the construction details of Sogyupyo including its development year, manufacturer, and installation spot. We have found that Sogyupyo would be manufactured by King Sejong in 1440 and placed around Ganuidae. And Sogyupyo would be five times smaller than Daegyupyo, i.e., 8-feet. On the basis of experiments, we suggest that although it is smaller, Sogyupyo was equipped with a bar [橫梁] and a pin-hole projector [影符] like Daegyupyo in order to produce the observation precision presented in the Veritable Record of King Myeongjong.

Current Status of the Korean Solar Radio Burst Locator

  • Bong, Su-Chan;HwangBo, Jung-Eun;Lee, Chang-Hoon;Cho, Kyung-Suk;Park, Young-Deuk;Gary, Dale E.;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제35권1호
    • /
    • pp.32.2-32.2
    • /
    • 2010
  • The Korean Solar Radio Burst Locator (KSRBL) is a single dish radio spectrograph, which is designed to record the spectra of microwave (0.5 - 18 GHz) bursts with 1 MHz spectral resolution and 1 s time cadence, and locate their positions on the solar disk within 2 arcmin. It was installed at KASI in 2009 August, and operational thereafter. The antenna pointing coefficients were initially determined during the installation and refined later using a series of antenna pointing calibrations. The filter to prevent the radio frequency interference around 2 GHz was designed and is to be installed. After the installation, the full frequency coverage will be recovered from the temporarily restricted frequency coverage (5 - 14 GHz). Also an effort to solve a couple of minor problems for the full performance of the system is in progress.

  • PDF

DEVELOPMENT OF A TOY INTERFEROMETER FOR EDUCATION AND OBSERVATION OF SUN AT 21 cm

  • Park, Yong-Sun;Kim, Chang-Hee;Choi, Sang-In;Lee, Joo-Young;Jang, Woo-Min;Kim, Woo-Yeon;Jeong, Dae-Heon
    • Journal of The Korean Astronomical Society
    • /
    • 제41권3호
    • /
    • pp.77-81
    • /
    • 2008
  • As a continuation of a previous work by Park et al. (2006), we have developed a two-element radio interferometer that can measure both the phase and amplitude of a visibility function. Two small radio telescopes with diameters of 2.3 m are used as before, but this time an external reference oscillator is shared by the two telescopes so that the local oscillator frequencies are identical. We do not use a hardware correlator; instead we record signals from the two telescopes onto a PC and then perform software correlation. Complex visibilities are obtained toward the sun at ${\lambda}\;=\;21\;cm$, for 24 baselines with the use of the earth rotation and positional changes of one element, where the maximum baseline length projected onto UV plane is ${\sim}\;90{\lambda}$. As expected, the visibility amplitude decreases with the baseline length, while the phase is almost constant. The image obtained by the Fourier transformation of the visibility function nicely delineates the sun, which is barely resolved due to the limited baseline length. The experiment demonstrates that this system can be used as a "toy" interferometer at least for the education of (under)graduate students.

DEVELOPMENT OF REAL-TIME DATA REDUCTION PIPELINE FOR KMTNet (KMTNet 실시간 자료처리 파이프라인 개발)

  • Kim, D.J.;Lee, C.U.;Kim, S.L.;Park, B.G.
    • Publications of The Korean Astronomical Society
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Real-time data reduction pipeline for the Korea Microlensing Telescope Network (KMTNet) was developed by Korea Astronomy and Space Science Institute (KASI). The main goal of the data reduction pipeline is to find variable objects and to record their light variation from the large amount of observation data of about 200 GB per night per site. To achieve the goal we adopt three strategic implementations: precision pointing of telescope using the cross correlation correction for target fields, realtime data transferring using kernel-level file handling and high speed network, and segment data processing architecture using the Sun-Grid engine. We tested performance of the pipeline using simulated data which represent the similar circumstance to CTIO (Cerro Tololo Inter-American Observatory), and we have found that it takes about eight hours for whole processing of one-night data. Therefore we conclude that the pipeline works without problem in real-time if the network speed is high enough, e.g., as high as in CTIO.

Analysis of Korean Historical Records of Comet Halley

  • Lee, Ki-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제37권2호
    • /
    • pp.102.1-102.1
    • /
    • 2012
  • In this paper, we analyzed Korean historical records of the periodic comet Halley in three periods (Three Kingdoms, the Goryeo dynasty, and the Joseon dynasty) using various sources such as Samguksagi (History of the Three Kingdoms), Goryeosa (History of the Goryeo Dynasty), and Joseonwangjosillok (Annals of the Joseon Dynasty). To determine the apparition time of the comet at each return, we referred to the works of Kronk. For the Three Kingdoms period, we could not find any record relevant to Halley's comet from Samguksagi. Instead, we examined the suggestion that the phenomenon two Suns appearing on April 1, 760 (in a luni-solar calendar), which is recorded in Samgukyusa (Renaissance of the Three Kingdoms), indicates an appearance of comet Halley during the daytime. In contrast, we found that all the returns of Halley's comet during the Goryeo dynasty are recorded, although some accounts are questioned. In addition, we found that the appearance of Halley's comet in 1145 is also mentioned in a spirit-path stele made in 1178. For the Joseon dynasty period, we found that all the returns of the comet are recorded, as with the Goryeo dynasty, except for the return of 1910, in which the former dynasty fell. In conclusion, we think that this study will be helpful for understanding Korean historical accounts of Halley's comet.

  • PDF

Structures of a Solar Filament Observed with FISS on 2010 July 29

  • Song, Dong-Uk;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제36권1호
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • In general, solar filaments are divided into two parts; one spine and several barbs. Barbs are seen as if they protrudes from the spine. Until now there are many controversies about the structures of a barb and spine. Recently, New Solar Telescope was installed at Big Bear Solar Observatory. Its clear aperture is about 1.6m and it is the largest telescope among ground-based solar telescopes. Fast Imaging Solar Spectrograph (FISS) developed by SNU and KASI was also installed in a vertical optical table in Coude room of the 1.6m NST. It is simultaneously able to record two lines; $H{\alpha}$ and Ca II 8542A lines. On 2010 July 29, we observed a portion of a solar filament located in northern hemisphere with FISS and it had a well-developed barb. And we also observed a potion of a spine. In order to analyze the data, we used the cloud model and obtained physical quantities of the solar filament. Temperature of the solar lament ranged between 4500K and 12000K and non-thermal velocity ranged between 3km/s and 6.5km/s. By comparing physical quantities of a barb and spine, we try to understand these structures of the solar filament.

  • PDF

Deep learning classification of transient noises using LIGOs auxiliary channel data

  • Oh, SangHoon;Kim, Whansun;Son, Edwin J.;Kim, Young-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제46권2호
    • /
    • pp.74.2-75
    • /
    • 2021
  • We demonstrate that a deep learning classifier that only uses to gravitational wave (GW) detectors auxiliary channel data can distinguish various types of non-Gaussian noise transients (glitches) with significant accuracy, i.e., ≳ 80%. The classifier is implemented using the multi-scale neural networks (MSNN) with PyTorch. The glitches appearing in the GW strain data have been one of the main obstacles that degrade the sensitivity of the gravitational detectors, consequently hindering the detection and parameterization of the GW signals. Numerous efforts have been devoted to tracking down their origins and to mitigating them. However, there remain many glitches of which origins are not unveiled. We apply the MSNN classifier to the auxiliary channel data corresponding to publicly available GravitySpy glitch samples of LIGO O1 run without using GW strain data. Investigation of the auxiliary channel data of the segments that coincide to the glitches in the GW strain channel is particularly useful for finding the noise sources, because they record physical and environmental conditions and the status of each part of the detector. By only using the auxiliary channel data, this classifier can provide us with the independent view on the data quality and potentially gives us hints to the origins of the glitches, when using the explainable AI technique such as Layer-wise Relevance Propagation or GradCAM.

  • PDF

Patterns of Astronomical Seeing at KSA SEM Observatory (한국과학영재학교 천지인 천문대의 천문학적 시상 패턴)

  • Kang, Im-Seok;Lee, Kyung-Hoon
    • Journal of the Korean earth science society
    • /
    • 제30권4호
    • /
    • pp.485-494
    • /
    • 2009
  • We report patterns of astronomical seeing at KSA SEMO (Korea Science Academy Space Earth and Man Observatory). Though the data of the seeing measured at the local observatory is essential in identifying the seeing of the observatory, systematic measurement of seeing has not been made in Pusan yet. For this reason, KSA SEMO adopted the Santa Barbara Instrument Group (SBIG) Seeing Monitor to constantly record the seeing. The seeing monitoring was done through an elaborate procedure involving direct CCD images in the focal plane which were subsequently analyzed for the full width at half maximum (FWHM) Gaussian widths. Based on the seeing monitoring for 8 months, we classified five patterns of the seeing at KSA SEMO: 'Sunset/Sunrise Effect', 'Extreme Fluctuation', 'Sudden Increment', 'Daily Variation' and 'Stable Condition'. Seeing was generally good from 1:00 am to 3:00 am than other times, and it was also better in Winter than in Summer.

STUDY ON THE RESTORATION MODEL OF JEONGNAM-ILGU, CREATED DURING THE REIGN OF KING SEJONG OF THE JOSEON DYNASTY (조선 세종대에 창제된 정남일구 복원모델 연구)

  • JIWON PARK;BYEONG-HEE MIHN;SANG HYUK KIM;YONG-GI KIM
    • Publications of The Korean Astronomical Society
    • /
    • 제38권1호
    • /
    • pp.1-12
    • /
    • 2023
  • Numerous Sundials were fabricated during the reign of King Sejong of the Joseon Dynasty. One among them is Jeongnam-Ilgu (the Fixing-South Sundial), where the time can be measured after setting up the suitable meridian line without a compass. We reconstructed the new Jeongnam-Ilgu model based on the records of 'Description of Making the Royal Observatory Ganui (簡儀臺記)' in the Veritable Record of King Sejong. Jeongnam-Ilgu has a summer solstice half-ring under a horizontal ring which is fixed to two pillars in the north and south, and in which a declination ring rotates around the polar axis. In our model, the polar axis matches the altitude of Hanyang (that is Seoul). There are two merits if the model is designed to install the polar axis in the way that enters both the north and south poles and rotates in them: One is that it is possible to fix the polar axis to the declination ring together with the cross-strut. The other is that a twig for hanging weights can be protruded on the North Pole. The declination ring is supposed to be 178 mm in diameter and is carved on the scale of the celestial-circumference degrees on the ring's surface, where a degree scale can be divided into four equal parts through the diagonal lines. In addition, the time's graduation that is drawn on the summer solstice half-ring makes it possible to measure the daytime throughout the year. An observational property of Jeongnam-Ilgu is that a solar image can be obtained using a pin-hole. The position cast by the solar image between hour circles makes a time measurement. We hope our study will contribute to the restoration of Jeongnam-Ilgu.