• 제목/요약/키워드: astronomical components

검색결과 276건 처리시간 0.034초

Progress report on CQUEAN (Camera for QUasars in EArly uNiverse)

  • 박원기;김은빈;최장수;임주희;김진영;정현주;오희영;박수종;임명신
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • We report the current status of CQUEAN (Camera for QUasars in EArly uNiverse) development. CQUEAN is an optical CCD camera which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1${\mu}m$, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A telescope interface containing a focal reducer is being designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. Instrument control software will be written with python on linux platform. We are carrying out lab tests to investigate the characteristics of the system components in order to maximize the observational efficiency. Preliminary results of the tests will be presented. CQUEAN is expected to see the first light during summer season of 2010.

  • PDF

Space Weather Effects on GEO Satellite Anomalies during 1997-2009

  • 최호성;이재진;조경석;조일현;박영득
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • Numerous operational anomalies and satellite failures have been reported since the beginnings of the "space age". Space weather effects on modern spacecraft systems have been emphasized more and more as increasing their complexity and capability. Energetic particles potentially can destroy and degrade electronic components in satellites. We analyzed the geostationary (GEO) satellite anomalies during 1997-2009 to search possible influences of space weather on the satellite anomalies like power problem, control processor problem, attitude control problem, etc. For this we use particle data from GOES and LANL satellites to investigate space weather effects on the GEO satellites' anomalies depending on Kp index, local time, seasonal variation, and high-energy electron contribution. As results, we obtained following results: (1) there is a good correlation between geomagnetic index(Kp) and anomaly occurrences of the GEO satellite; (2) especially during the solar minimum, occurrence of the satellite anomalies are related to electron flux increase due to high speed solar wind; (3) satellite anomalies occurred more preferentially in the midnight and dawn sector than noon and dusk sector; (4) and the anomalies occurred twice more in Spring and Fall than Summer and Winter; (5) the electron with the lowest energy channel (50-75keV) has the highest correlation (cc=0.758) with the anomalies. High association between the anomalies and the low energy electrons could be understand by the facts that electron fluxes in the spring and fall are stronger than those in the summer and winter, and low-energy electron flux is more concentrated in the dawn sector where the GEO satellite anomalies occurred more frequently than high-energy electron flux. While we could not identify what cause such local time dependences, our results shows that low-energy electrons (~100keV) could be main source of the satellite anomaly, which should be carefully taken into account of operating satellites.

  • PDF

A pilot study on the formation and evolution of the Intracluster light: Preliminary results of the Coma cluster

  • Yoo, Jaewon;Ko, Jongwan
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.52.1-52.1
    • /
    • 2017
  • Galaxy clusters are the most massive gravitationally bound systems and thus probably the most recent objects to form. One of promising routes to understand the assembly history of galaxy clusters is to measure observable quantities of components in clusters that are sensitive to the evolutionary state of the cluster. Recent deep observations on the nearby clusters show distinct diffuse intracluster light (ICL), that the light from stars are not bound any individual cluster galaxy, however until now this component has not been well studied due to its faint nature, with typical brightness of ~100 times fainter than the sky background. As shown in galaxy cluster simulation studies, the ICL abundance increases during various dynamical exchanges of galaxies such as the disruption of dwarf galaxies, major mergers between galaxies and the tidal stripping of galaxies. Thus, the ICL is an effective tool to measure the evolutionary stage of galaxy clusters. Moreover, the investigation of the ICL evolution mechanism will allow us understand the galaxy evolution process therein. In this pilot study, we target the Coma cluster, where the existing ICL studies are limited only in the central region. With large and uniform deep optical images from the Subaru telescope, available only recently (Okabe et al. 2014), we are developing a robust ICL measurement technique, extracting the ICL surface brightness and color profiles, which will allow us to study the origin of the ICL and its connection to the evolutionary history of the Coma cluster. For the next phase, we plan to utilize the plenty of spectroscopy data from the MMT telescope to compare ICL properties with the star formation history of the brightest cluster galaxies (BCG), and discuss the ICL formation mechanism of the Coma cluster by comparing the distribution of cluster galaxies with the distribution of diffuse light inside the Coma cluster.

  • PDF

The Flow of the Interstellar Plasmas surrounding the Heliopause estimated via IBEX-Lo Observations

  • 박지우
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.51.3-52
    • /
    • 2018
  • Since Voyager 1 passed the Heliopause in 2012, it has provided the observations of the charged particles in the local interstellar medium. However, Voyager 1 only provides the information along with its trajectory. In order to understand the global view of the interstellar plasma flow surrounding the Heliopause, we need another tool. When the interstellar plasmas approach the Heliopause, the ions are deflected around the Heliopause due to the draping of the interstellar magnetic field. The draping of the interstellar magnetic field is strongly connected with the shape of the Heliopause. A fraction of the diverted ions exchanges their charges with the undisturbed primary interstellar neutral atoms, and then the ions become neutral atoms called the secondary interstellar neutral atoms. The newly created neutral atoms carry information on the diverted flow of the interstellar ions, and a fraction of them can travel to the Sun. Therefore, the secondary component of the interstellar neutrals is an excellent diagnostic tool to provide important information to constrain the shape of the Heliopause. The secondary interstellar neutrals are observed by Interstellar Boundary Explorer (IBEX) at Earth's orbit. Since 2009, two energetic neutral atom cameras on IBEX have measured neutral atoms and it has provided sky maps of neutral atoms. In this presentation, we will discuss the directional distribution of the secondary interstellar neutrals at Earth's orbit. In the sky maps, the primary interstellar neutral gas is seen between $200^{\circ}$ and $260^{\circ}$ in ecliptic longitude and the secondary components are seen in the longitude range of $160^{\circ}-200^{\circ}$. We also present a simplified model of the outer heliosheath to help interpret the observations of interstellar neutrals by the IBEX-Lo instruments. We extract information on the large-scale shape of the Heliopause by comparing the neutral flux measured at IBEX along four different look directions with simple models of deflected plasma flow around hypothetical obstacles of different aspect ratios to the flow. Our comparisons between the model results and the observations indicate that the Heliopause is very blunt in the vicinity of the Heliospheric nose, especially compared to a Rankine half-body or cometary shape.

  • PDF

The KMTNet View of Variable Stars : Pulsation and Rotation of the EL CVn-type Eclipsing Binary J0247-25

  • Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Lee, Yongseok;Lee, Dong-Joo;Hong, Kyeongsoo;Cha, Sang-Mok;Kim, Dong-Jin;Park, Byeong-Gon
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.41.2-41.2
    • /
    • 2018
  • EL CVn-type eclipsing binaries are composed of a massive A-type main-sequence primary star and a hotter B-type secondary one. These are worthy of particular attention because the secondary stars are rare objects to be extremely low-mass white dwarf precursors (ELM proto-WD) with the mass of ${\leq}0.2M_{\odot}$, evolving to higher effective temperatures and higher surface gravities. A few of them were discovered to show multi-periodic pulsations in one or both components. We monitored one of these rare and interesting objects, J0247-25 (=1SWASP J024743.37-251549.2), at two KMTNet sites of SAAO in South Africa and SSO in Australia. The observations were performed with the KMTNet 1.6m telescopes and pre-science 4K CCD cameras during the system test run from July to November 2014. Using the photometric data obtained for a total of 23 nights, we constructed well-defined eclipsing light curves in B/V-bands and derived absolute parameters (mass and radius, etc.) of each binary component. After subtracting model eclipsing curves from the data, we detected seven frequencies with 33~53 cycles per day (c/d) and identified them to be Delta Sct-type pulsations originated from the A-type primary component. Five frequencies were turned out to be excited by rotational splitting of non-radial pressure modes, enabled us to investigate rotational properties. We could not detect any frequency higher than 100 c/d, implying that pulsation amplitudes of the proto-WD secondary decrease greatly.

  • PDF

A STUDY OF LYNDS 1299 DARK CLOUD

  • RYU OK-KYUNGI;LEE YOUNGUNG
    • 천문학회지
    • /
    • 제31권2호
    • /
    • pp.161-171
    • /
    • 1998
  • We have mapped about 1.5 square degree regions of Lynds 1299, a well isolated dark cloud in the Outer Galaxy (l = $122^{\circ}$, b = $-7^{\circ}$), in the J = 1- 0 transition of $^{12}CO$ and $^{13}CO$ with the 13.7 m radio telescope at Taeduk Radio Astronomy Observatory (TRAO). We found that there are two velocity components in the molecular emission, at $V_{LSR} = -52 km S^{-1}$ (Cloud A) and -8.8 km $s^{-1}$ (Cloud B), respectively. We have derived physical parameters of two molecular clouds and discussed three different mass estimate techniques. We found that there are large discrepancies between the virial and LTE mass estimates for both clouds. The large virial mass estimate reflects the fact that both are not gravitationally bound. We adopt the mass of $5.6 {\times}10^3 \;M{\bigodot}$ for Cloud A and $1.2{\times}10^3 \;M{\bigodot}$) for Cloud B using conversion factor. Cloud A is found to be associated with a localized star forming site, and its morphology is well matching with that of far-infrared (FIR) dust emission. It shows a clear ring structure with an obvious velocity gradient. We suggest that it may be a remnant cloud from a past episode of massive star formation. Cloud B is found to be unrelated to Cloud A (d = 800 pc) and has no specific velocity structure. The average dust color temperature of the uncontaminated portion of Cloud A is estimated to be 24$\~$27.4 K. The low dust temperature may imply that there is no additional internal heating source within the cloud. The heating of the cloud is probably dominated by the interstellar radiation field except the region directly associated with the new-born B5 star. Overall, the dust properties of Cloud A are similar to those of normal dark cloud even though it does have star forming activity.

  • PDF

MOLECULAR CLOUDS WITH PECULIAR VELOCITY IN THE OUTER LOCAL ARM

  • Kang, Mi-Ju;Lee, Young-Ung
    • 천문학회지
    • /
    • 제39권4호
    • /
    • pp.107-114
    • /
    • 2006
  • We conducted an analysis of a selected region from the FCRAO $^{12}CO$ Outer Galaxy Survey. The selected region is located between galactic longitude $117^{\circ}$ and $124^{\circ}$ with the velocity of -23 km $s^{-1}. Molecular clouds in this region show a peculiar velocity field, protruding from the Local Arm population. The selected region is divided into 7 clouds by spatial location. Though we were not able to identify the direct driving source for peculiar velocity of our target region, we find that there are several internal YSOs or star forming activities; there are many associated sources like an outflows, a high-mass protostellar candidate and $H_2O$ maser sources. We attribute the driving energy source to older generation of episodic star formation. Masses of main clouds(cloud 1-4) estimated using a conversion factor from $^{12}CO$ luminosity are larger than $10^4M_{\odot}$. Other components have a small mass as about $10^3M_{\odot}$. Among main clouds, cloud 2 and 4 seem to be marginally gravitational bound systems as their ratio of $M_{CO}$ to $M_{VIR}$ is about $2{\sim}3$, and the internal velocity dispersion is larger than the centroid velocity dispersion. Total mass estimated using a conversion factor from $^{12}CO$ luminosity is $7.9{\times}10^4M_{\odot}$.

POLARIZATION OF THOMSON SCATTERED LINE RADIATION FROM BROAD ABSORPTION LINE OUTFLOWS IN QUASARS

  • Baek, Kyoung-Min;Bang, Jeong-Hoon;Jeon, Yeon-Kyeong;Kang, Suna;Lee, Hee-Won
    • 천문학회지
    • /
    • 제40권1호
    • /
    • pp.1-7
    • /
    • 2007
  • About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds ${\upsilon}=c{\beta}<0.2c$ near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.

Small group of protostellar objects: L1251C

  • 김정하;이정은;최민호
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.51.1-51.1
    • /
    • 2013
  • We present molecular line observations of a small group of Young Stellar Objects (YSOs), L1251C. Observations by Spitzer Space Telescope legacy program "From Molecular Cores to Planet Forming Disks"(c2d; Evans et al. 2003) revealed that there are three YSOs within ~15" in L1251C: IRS1 (Class I), IRS2 (Class II), and IRS3 (Class II). In order to understand the molecular environment around these YSOs, we carried out the KVN single-dish observations in $HCO^+$ J=1-0, $H^{13}CO^+$ J=1-0, $N_2H^+$ J=1-0 and HCN J=1-0. CO J=1-0 was also mapped in L1251C with the TRAO 14m telescope. Integrated intensity maps of high density tracers such as $H^{13}CO^+$ J=1-0, $N_2H^+$ J=1-0 and HCN J=1-0 show similar emission distributions, whose peaks are off from the positions of YSOs. However, $HCO^+$ J=1-0, which is believed to trace both infall and outflow, presents its emission distribution different from those of other molecular transitions. The line profile of $HCO^+$ J=1-0 is superimposed by two velocity (narrow and broad) components. The $HCO^+$ outflow map reveals multiple structures while the CO outflow map elongates mainly along the EW direction. With the KVN single dish, the 22 GHz $H_2O$ maser emission has been also monitored toward L1251C to find variations of the systemic velocity and intensity with time.

  • PDF

Internal kinematics of dwarf early-type galaxies with blue-center in the Virgo Cluster from Gemini GMOS long-slit spectroscopy

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang;Lee, Youngdae;Kim, Suk;Lee, Woong
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.33.1-33.1
    • /
    • 2016
  • Dwarf elliptical galaxies (dEs), the most abundant galaxy type in clusters, were recently shown to exhibit a wide variety in their properties. Particularly, the presence of blue cores in some dEs, what we call dE(bc), supports the scenario of late-type galaxy infall and subsequent transformation into red, quiescent dEs. While several transformation mechanisms for these dE(bc)s within cluster environment have been proposed, all these processes are able to explain only some of the observational properties of dEs. In this context, internal kinematic properties of dE(bc)s provide the most crucial evidence to discriminate different processes for the formation of these galaxies. We present Gemini Multi Object Spectrograph (GMOS) long-slit spectroscopy of two dE(bc)s in the Virgo cluster. We obtained radial profiles of velocity and velocity dispersion out to ~1.3 effective radius. We found that two dE(bc)s exhibit kinematically decoupled components as well as distinct peculiar features in velocity profiles, supporting the scenario of mergers. We also found that these galaxies are structurally compatible with low surface brightness component of blue compact dwarf galaxies. We suggest that a part of dE(bc)s in the Virgo Cluster were formed through galaxy merger in low density environment such as galaxy group or outskirt of the cluster, and then were quenched by subsequent effects within cluster environment.

  • PDF