• Title/Summary/Keyword: astronomical components

Search Result 276, Processing Time 0.03 seconds

Test of magnetic turbulence anisotropy associated with magnetic dipolarizations

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field and compare them to determine possible anisotropic features. For this study, we identify a total of 47 dipolarization events from February 2008 using the magnetic field observations by the THEMIS A, D and E satellites when they are situated closely near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that for many events the spectral indices are larger for fluctuations in the ${\Psi}$ direction than for those in the other two directions, where the ${\Psi}$ direction is perpendicular to the background magnetic field line and to the azimuthal direction. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic. We discuss how this result differs from what is expected from the theory of homogeneous, anisotropic, MHD turbulence.

  • PDF

Distribution of Baryonic Matter in Dark Matter Halos: Effect of Dynamical Friction

  • Bae, Yeong-Bok;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We studied the evolution of the two mass components system with NFW initial density distribution by direct integration of the Fokker-Planck equations. The low mass component is regarded the dark matter particles while the high mass component is assumed to be conglomerates of baryonic matter in order to depict the 'stars'. While the true mass ratio between these two types of particles should be extremely large, our adopted mass ratio is about 1000 beyond which the dynamical evolution and density distribution tend to converge. Since the dynamical evolution is dominated by the dynamical friction, the high mass component slowly moves toward the central part, and eventually undergoes the core collapse. The system reaches the core-collapse at about $7.1{\times}10^{-3}$ $t_{fh}$ in NFW models, where $t_{fh}$is the dynamical friction time at half-mass radius. The distribution of the high mass component is well fitted by the Sersic profiles or modified Hubble profile when the mass segregation is established. From these results, the surface brightness of elliptical galaxies may be explained by the high mass component experiencing dynamical friction by the dark matter particles. In order for the mass segregation to be effective within Hubble time, the mass of the luminous component should be greater than $10^5M_{\bigodot}$.

  • PDF

SPH SIMULATIONS OF BARRED GALAXIES: DYNAMICAL EVOLUTION OF GASEOUS DISK

  • ANN HONG BAE;LEE HVUNG MOK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.1-17
    • /
    • 2000
  • We have performed extensive simulations of response of gaseous disk in barred galaxies using SPH method. The gravitational potential is assumed to be generated by disk, bulge, halo, and bar. The mass of gaseous disk in SPH simulation is assumed to be negligible compared to the stellar and dark mass component, and the gravitational potential generated by other components is fixed in time. The self-gravity of the gas is not considered in most simulations, but we have made a small set of simulations including the self-gravity of the gas. Non-circular component of velocity generated by the rotating, non-axisymmetric potential causes many interesting features. In most cases, there is a strong tendency of concentration of gas toward the central parts of the galaxy. The morphology of the gas becomes quite complex, but the general behavior can be understood in terms of simple linear approximations: the locations and number of Lindblad resonances play critical role in determining the general distribution of the gas. We present our results in the form of 'atlas' of artificial galaxies. We also make a brief comment on the observational implications of our calculations. Since the gaseous component show interesting features while the stellar component behaves more smoothly, high resolution mapping using molecular emission line for barred galaxies would be desirable.

  • PDF

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.3-79.3
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Proper motion and physical parameters of the two open clusters NGC 1907 and NGC 1912

  • Lee, Sang Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.59.4-60
    • /
    • 2018
  • Ultra-diffuse galaxies (UDGs) are an unusual galaxy population. They are ghostlike galaxies with fainter surface brightness than normal dwarf galaxies, but they are as large as MW-like galaxies. The key question on UDGs is whether they are 'failed' giant galaxies or 'extended' dwarf galaxies. To answer this question, we study UDGs in massive galaxy clusters. We find an amount of UDGs in deep HST images of three Hubble Frontier Fields clusters, Abell 2744 (z=0.308), Abell S1063 (z=0.347), and Abell 370 (z=0.374). These clusters are the farthest and most massive galaxy clusters in which UDGs have been discovered until now. The color-magnitude relations show that most UDGs have old stellar population with red colors, while a few of them show bluer colors implying the existence of young stars. The stellar masses of UDGs show that they have less massive stellar components than the bright red sequence galaxies. The radial number density profiles of UDGs exhibit a drop in the central region of clusters, suggesting some of them were disrupted by strong gravitational potential. Their spatial distributions are not homogeneous, which implies UDGs are not virialized enough in the clusters. With virial masses of UDGs estimated from the fundamental manifold, most UDGs have M_200 = 10^10 - 10^11 M_Sun indicating that they are dwarf galaxies. However, a few of UDGs more massive than 10^11 M_Sun indicate that they are close to failed giant galaxies.

  • PDF

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.40.4-41
    • /
    • 2018
  • The current 'standard model' of cosmology provides a minimal theoretical framework that can explain the gaussian, nearly scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies. However accepting this framework, requires that we include within our cosmic inventory a vacuum energy that is ~122 orders of magnitude lower than Quantum Mechanical predictions, or alternatively a new scalar field (dark energy) that has negative pressure. An alternative approach to adding extra components to the Universe would be to modify the equations of Gravity. Although GR is supported by many current observations there are still alternative models that can be considered. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this talk we present our methodology and preliminary results that show f(R) gravity is mildly disfavoured by the data.

  • PDF

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Development of Gravitational Wave Detection Technology at KASI (한국천문연구원의 중력파 검출기술 개발)

  • Lee, Sungho;Kim, Chang-Hee;Park, June Gyu;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol;Ra, Young-Sik;Gwak, Geunhee;Yoon, Youngdo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2021
  • For the first time in Korea, we are developing technology for gravitational wave (GW) detectors as a major R&D program. Our main research target is quantum noise reduction technology which can enhance the sensitivity of a GW detector beyond its limit by classical physics. Technology of generating squeezed vacuum state of light (SQZ) can suppress quantum noise (shot noise at higher frequencies and radiation pressure noise at lower frequencies) of laser interferometer type GW detectors. Squeezing technology has recently started being used for GW detectors and becoming necessary and key components. Our ultimate goal is to participate and make contribution to international collaborations for upgrade of existing GW detectors and construction of next generation GW detectors. This presentation will summarize our results in 2020 and plan for the upcoming years. Technical details will be presented in other family talks.

  • PDF

Multiepoch Optical Images of IRC+10216 Tell about the Central Star and the Adjacent Environment

  • Kim, Hyosun;Lee, Ho-Gyu;Ohyama, Youichi;Kim, Ji Hoon;Scicluna, Peter;Chu, You-Hua;Mauron, Nicolas;Ueta, Toshiya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.36.1-37
    • /
    • 2021
  • Six images of IRC+10216 taken by the Hubble Space Telescope at three epochs in 2001, 2011, and 2016 are compared in the rest frame of the central carbon star. An accurate astrometry has been achieved with the help of Gaia Data Release 2. The positions of the carbon star in the individual epochs are determined using its known proper motion, defining the rest frame of the star. In 2016, a local brightness peak with compact and red nature is detected at the stellar position. A comparison of the color maps between 2016 and 2011 epochs reveals that the reddest spot moved along with the star, suggesting a possibility of its being the dusty material surrounding the carbon star. Relatively red, ambient region is distributed in an Ω shape and well corresponds to the dusty disk previously suggested based on near-infrared polarization observations. In a larger scale, differential proper motion of multiple ring-like pattern in the rest frame of the star is used to derive the average expansion velocity of transverse wind components, resulting in ~12.5 km s-1 (d/123 pc), where d is the distance to IRC+10216. Three dimensional geometry is implied from its comparison with the line-of-sight wind velocity determined from half-widths of submillimeter emission line profiles of abundant molecules. Uneven temporal variations in brightness for different searchlight beams and anisotropic distribution of extended halo are revisited in the context of the stellar light illumination through a porous envelope with postulated longer-term variations for a period of 10 years.

  • PDF