• Title/Summary/Keyword: astrobiology - astrophysics

Search Result 5, Processing Time 0.017 seconds

Profile, Facilities, and Options for Collaboration with Steward Observatory

  • Green, Richard F.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2015
  • Steward Observatory has a rich and diverse program of investigations, with significant groups working on star and planet formation and astrobiology, galaxy and quasar formation and evolution, technology for adaptive optics and interferometry, computational astrophysics, and effectiveness of educational practice. To support this work, Steward operates and offers a range of observational and other facilities, including the Large Binocular Telescope, the MMT, the Magellan Telescopes, the Arizona Radio Observatory, and a suite of 1- and 2-m class telescopes. A special opportunity for IR astronomy exists with Arizona now running UKIRT. Steward Observatory astronomers would welcome the opportunity to form genuine scientific collaborations that are mutually beneficial for high-impact projects and improving the observing facilities.

  • PDF

The Square Kilometre Array in Australia

  • Bock, Douglas C.J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.63-63
    • /
    • 2012
  • The Square Kilometre Array (SKA) will be the world's largest and most sensitive radio telescope. It will address a wide range of fundamental questions in physics, astrophysics, cosmology and astrobiology. Australia, one of the two countries selected to host the SKA, has spent several years preparing by opening up the Murchison Radio-astronomy Observatory (MRO) as a uniquely radio quiet site in Western Australia, and by constructing the world's most powerful radio survey telescope, the Australian SKA Pathfinder (ASKAP). The SKA will be built in two phases. Phase I will include ASKAP, which will use novel phased-array feeds and grow to become "SKA-survey". Phase I will also include a dish array ("SKA-mid") in South Africa and a low-frequency array ("SKA-low") in Australia, and is slated for operation from about 2020. Phase II of the SKA will consist of further expansion of SKA-low and SKA-mid and is due for completion in the middle of the next decade.

  • PDF

MINERVA: SMALL PLANETS FROM SMALL TELESCOPES

  • WITTENMYER, ROBERT A.;JOHNSON, JOHN ASHER;WRIGHT, JASON;MCCRADY, NATE;SWIFT, JONATHAN;BOTTOM, MICHAEL;PLAVCHAN, PETER;RIDDLE, REED;MUIRHEAD, PHILIP S.;HERZIG, ERICH;MYLES, JUSTIN;BLAKE, CULLEN H.;EASTMAN, JASON;BEATTY, THOMAS G.;LIN, BRIAN;ZHAO, MING;GARDNER, PAUL;FALCO, EMILIO;CRISWELL, STEPHEN;NAVA, CHANTANELLE;ROBINSON, CONNOR;HEDRICK, RICHARD;IVARSEN, KEVIN;HJELSTROM, ANNIE;VERA, JON DE;SZENTGYORGYI, ANDREW
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.665-669
    • /
    • 2015
  • The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect $15{\pm}4$ new low-mass planets.

THE PROSPECT OF INTERSTELLAR OBJECT EXPLORATIONS FOR SEARCHING LIFE IN COSMOS (우주생명현상과 성간천체 탐사 전망)

  • Minsun Kim;Ryun Young Kwon;Thiem Hoang;Sungwook E. Hong
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.25-36
    • /
    • 2023
  • Since interstellar objects like 1I/'Oumuamua and 2I/Borisov originate from exoplanetary systems, even if we do not visit the exoplanetary systems, flyby, rendezvous, and sample return missions of interstellar objects can provide clues to solve the mysteries of cosmic life phenomena such as the origin of exoplanetary systems, galactic evolution, biosignatures (or even technosignatures), and panspermia. In this paper, we review space missions for interstellar object exploration in the stage of mission design or concept study such as Project Lyra, Bridge, Comet Interceptors, and LightcraftTM. We also review space missions, OSIRIS-REx and NEA Scout, designed for Near Earth Asteroids(NEA) explorations, to investigate the current state of basic technologies that can be extended to explore interstellar objects in a velocity of ~ 6AU/year. One of the technologies that needs to be developed for interstellar object exploration is a spacecraft propulsion method such as solar sail, which can catch up with the fast speed of interstellar objects. If this kind of propulsion becomes practical for space explorations, interstellar object explorations will mark a new era and serve as a driving force to provide evidences of cosmic life.

DETECTING INTERSTELLAR OBJECTS BY USING SPACE WEATHER DATA (우주기상 데이터를 활용한 성간천체 탐색)

  • Ryun Young Kwon;Minsun Kim;Sungwook E. Hong;Thiem Hoang
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • We present a novel method that can enhance the detection success rate of interstellar objects. Interstellar objects are objects that are not gravitationally bound to our solar system and thus are believed to have originated from other planetary systems. Since the finding of two interstellar objects, 1l/'Oumuamua in 2017 and 2l/Borisov in 2019, much attention has been paid to finding new interstellar objects. In this paper, we propose the use of Heliospheric Imagers (HIs) for the survey of interstellar objects. In particular, we show HI data taken from Solar TErrestrial RElation Observatory/Sun Earth Connection Coronal and Heliospheric Investigation and demonstrate their ability to detect 'Oumuamua-like interstellar objects. HIs are designed to monitor and study space weather by observing the solar wind traveling through interplanetary space. HIs provide the day-side observations and thus it can dramatically enlarge the observable sky range when combined with the traditional night-side observations. In this paper, we first review previous methods for detecting interstellar objects and demonstrate that HIs can be used for the survey of interstellar objects.