• Title/Summary/Keyword: asteroids

Search Result 118, Processing Time 0.023 seconds

Study of Hydrated Asteroids via Polarimetry: Correlation between Polarimetric Properties and the Degree of Aqueous Alteration of Hydrated asteroids (편광을 통한 수화한 소행성 연구)

  • Geem, Jooyeon;Ishiguro, Masateru;Naito, Hiroyuki;Kuroda, Daisuke;Takahashi, Koki;Sekiguchi, Tomohiko;Takagi, Seiko;Ono, Tatsuharu;Kuramoto, Kiyoshi;Nakamura, Tomoki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2021
  • Hydrated asteroids get widespread attention for the evolution of water in the Solar System, especially thanks to the recent successes of the Hayabusa2 and OSIRIS-REx space missions. The target asteroids of these missions are believed to be fragments that have experienced aqueous alteration in their parent bodies [3]. Although hydrated asteroids have been studied well via spectroscopy, focusing on the 0.7 um or the 2.7 um absorption bands [2, 3, 4], polarimetric properties of these asteroids have rarely been investigated. In this study, we conducted a polarimetric observation of 18 C-complex main-belt asteroids with the 1.6-m Pirka telescope at the Nayoro Observatory of Hokkaido University, Japan. We used a polarimetric imaging mode of the Multi-Spectral Imager (MSI) with the standard Rc-band filter (the central wavelength at 0.64 um) [5]. As a result, we found that all of these hydrated asteroids indicate deep negative branches of their polarimetric profiles. Accordingly, the hydrated asteroids have the polarization minima (Pmin), whose values are significantly lower than any other taxonomic types of asteroids (including C-group asteroids). Because Pmin depends on albedo, particle size, and porosity of the surface materials [1], we suspect that hydrated asteroids are distinctive from other asteroids in terms of these physical properties. In this presentation, we introduce our polarimetric observation and findings. We discuss why hydrated asteroids indicate such low Pmin values, comparing Pmin with spectral features at 0.7 um and 2.7 um based on the observation results.

  • PDF

STABILITY OF ASTEROID MOTIONS

  • KOZAI YOSHIHIDE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.351-354
    • /
    • 1996
  • In this paper it is explained how most of asteroids can avoid very close approach to Jupiter, to the earth for earth orbit crossing asteroids, and to Neptune for Kuiper-belt asteroids by mechanisms which work also for Neptune-Pluto system. In fact the mutual distance of the planets cannot become very small as the critical argument librates around $180^{\circ}$ because of 2:3 mean motion resonance and the argument of perihelion of Pluto librates around $90^{\circ}$. And it is found that among nearly 40 Kuiper-belt asteroids discovered in recent years $40\%$ have orbits similar to Pluto. For main-belt asteroids the distribution with respect to the semi-major axes has peculiar characteristics and the author tries to explain how their peaks and gaps are created. It is also found that $30\%$ of 80 earth orbit crossing asteroids which have minimum perihelion distances less than 1.04AU have no chance to collide with the earth. Still $30\%$ of them have a few probability to collide with the earth as they have dynamical characteristics of short-periodic comets.

  • PDF

Space Missions to Asteroids

  • Park, Sang-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.71.3-71.3
    • /
    • 2018
  • Asteroids represent a significant resource for space exploration and scientific research. Various scientific missions have already performed and planned to investigate and understand the characteristics of asteroids. This talk introduces many space missions to asteroids. Representing missions to asteroids are the NASA's NEAR, Deep Space-1, Dawn, OSIRIS-Rex, SCOUT, DART, and ESA's Rosetta, and JAXA's Hayabusa 1 and 2, and DESTINY+ missions, and others. Although it is a very rare event, the possibility of Earth-crossing asteroids (ECAs) colliding with the Earth can never also be ignored. Numerous mitigation concepts also have been proposed to deflect ECAs in preparing for the disasters which might occur in future days. In the early studies for mitigation schemes, most of analyses were centered on to deflect ECAs with impacting the energy to the object to change its orbit. This talk also introduces many methods to deflect the orbit of ECAs, and shows spacecraft trajectories to asteroids.

  • PDF

Taxonomic Classification of Asteroids Using KMTNet Data to Identify Asteroid Families

  • Choi, Sangho;Chiang, Howoo;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2019
  • Identifying asteroid families, which are groups of asteroids with similar orbital properties, is important for understanding the formation and evolution of the solar system, and probing the origins of Near-Earth Objects (NEOs). Although asteroid taxonomy can be used to identify and refine asteroid families, there are numerous asteroids which are not taxonomically classified yet. Korea Microlensing Telescope Network (KMTNet) can be useful to investigate types of that asteroids, because the telescope can observe a number of asteroids at once by its large field of view. Using KMTNet data, we confirmed that the taxonomic classification of the asteroids is possible by plotting color-color diagram. There is a clear division between C-type and S-type, but ambiguous division between C-type and X-type. In the future, we will observe and classify asteroids which are not classified yet and utilize the data to identify and refine asteroid families.

  • PDF

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

Rotational and Observational Properties of NEA and Asteroid Family

  • Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2014
  • The rotation of asteroids can help reveal not only the fundamental characteristics of asteroids but also the origin and evolution of our Solar System. From the photometric observations for NEA 162173 (1999 JU3) and Maria family asteroids using 0.5 m- to 2 m- class telescopes at 10 observatories in the northern hemisphere, I obtained a total of 260 lightcurves for 97 asteroids and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. For the sake of efficiency, I developed an observation scheduler, SMART (Scheduler for Measuring Asteroid RoTation) and a photometric analysis software subsystem, ASAP (Asteroid Spin Analysis Package). Based on the lightcurve analysis of NEA 162173 (1999 JU3) and Maria family asteroids, 1) I present the rotational and observational characteristics of 1999 JU3 and provided the Hayabusa-2 Science team with the information on pole orientations, 2) I investigated correlations among rotational periods, amplitudes of lightcurves, and sizes, and conclude that the rotational properties of old-type family asteroids have been changed considerably by the YORP effect. 3) Finally, I found the Yarkovsky footprints on the Maria asteroid family and estimated that approximately 37 to 75 Maria family asteroids larger than 1 km have entered the near-Earth space every 100 Myr. This study should reveal the collisional history and transport route of the members from the resonance region to the near Earth space, for the first time.

  • PDF

DEEP-South: Asteroid Light-Curve Survey Using KMTNet

  • Lee, Hee-Jae;Yang, Hongu;Kim, Dong-Heun;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.46.3-47
    • /
    • 2020
  • Variations in the brightness of asteroids are caused by their spins, irregular shapes and companions. Thus, in principle, the spin state and shape model of a single object or, a combined model of spins, shapes and mutual orbit of a multiple components can be constructed from the analysis of light curves obtained from the time-series photometry. Using ground- and space-based facilities, a number of time-series photometric observations of asteroids have been conducted to find the possible causes of their light variations. Nonetheless, only about 2% of the known asteroids have been confirmed for their rotation periods. Therefore, a follow-on systematic photometric survey of asteroids is essential. We started an asteroid light curve survey for this purpose using Korea Microlensing Telescope Network (KMTNet) during 199 nights between the second half of 2019 and the first half of 2020. We monitored within a 2° × 14° region of the sky per each night with 25 min cadences. In order to observe as many asteroids as possible with a single exposure, we mostly focus on the ecliptic plane. In our survey, 25,925 asteroids were observed and about 8,000 of them were confirmed for their rotation periods. In addition, using KMTNet's 24-hour continuous monitoring, we collected many composite light curves of slow rotating asteroids that were rarely obtained with previous observations. In this presentation, we will introduce the typical light curves of asteroids obtained from our survey and present a statistical analysis of spin states and shapes of the asteroids from this study.

  • PDF

Ecliptic Survey for Unknown Asteroids with DEEP-South

  • Lee, Mingyeong;JeongAhn, Youngmin;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2019
  • Eight hundred thousand asteroids in the solar system have been identified so far under extensive sky surveys. Kilometer to sub-km sized asteroids, however, are still waiting for discovery, and their size and orbital distribution will provide a better understanding of the collisional and dynamical evolution of the solar system. In order to study the number of asteroids which is detectable with 1.6 m telescope and their orbital distribution, we conducted a small observation campaign as a part of Deep Ecliptic Patrol of the Southern Sky (DEEP-South) project, which is an asteroid survey in the southern hemisphere with Korea Microlensing Telescope Network (KMTNet). We observed the ecliptic plane near opposition ($2^{\circ}{\times}2^{\circ}$ field of view centering on ${\alpha}=22h40m31s$, ${\delta}=-08^{\circ}22^{\prime}58^{{\prime}{\prime}}$) in August 2018, and identified 464 moving objects by visual inspection. As a result, 266 of 464 moving objects turn out to be previously unknown asteroids, and their signal to noise ratio is below two on numerous occasions. Most of the newly detected objects are main belt asteroids (MBAs), while three Hildas, one Jupiter trojan, and two Hungarias are also identified. In this meeting, we report the differences in the orbital distributions between the previously known asteroids and newly discovered ones using statistical methods. We also talk about the observational bias of this survey and suggest future works.

  • PDF

Spin and shape analysis for the Mars-crossing asteroid 2078 Nanking

  • Choi, Jung-Yong;Kim, Myung-Jin;Choi, Young-Jun;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.85.2-86
    • /
    • 2015
  • The YORP effect is non-gravitational force that changes the spin-status of asteroid. So far this effect has been directly detected only from the Near-Earth asteroids (Taylor et al. 2007; Lowry et al. 2007, 2014; Breiter et al. 2011; Durech et al. 2008, 2012). Pravec at el. 2008 found the evidences for changing spin rate of small asteroids (3 - 15 km) by the YORP effect in the Main-Belt and Mars-crossing asteroids. The Mars-crossing asteroids (1.3 < q < 1.66 AU) are objects that cross orbit of the Mars. The Mars-crossing asteroids are regarded as one of the main sources for the Near-Earth asteroids. We expect that rotation of Mars-crossing asteroids would be influenced by the YORP effect. We try to search observational evidence of the YORP effect for the Mars-crossing asteroid. Our target 2078 Nanking is a population of the Mars-crossing asteroid. First light-curve of 2078 Nanking was obtained from Mohamed et al. 1994, and Warner et al. 2015 recently published new observational data. We observed this asteroid on 26th Nov. 2014 and 17th Jan. 2015 using SOAO (Sobaeksan Optical Astronomy Observatory) 0.61 m telescope with 4K CCD. Using light-curve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al. 2001), we try to determine the pole orientation and shape model of this asteroid based on the combination of our light-curve and literature photometric data. Knowing spin parameters, such as rotational period and spin axis, are essential for studying the YORP effect. In this presentation, we provide some preliminary results of our recent study: light-curve and processing of shape modeling of 2078 Nanking. We plan to find observational clue for the YORP effect on the Mars-crossing asteroids.

  • PDF

A PANORAMIC VIEW OF THE ASTEROIDS IN THE INNER SOLAR SYSTEM WITH AKARI

  • Usui, F.;Kuroda, D.;Muller, T.G.;Hasegawa, S.;Ishiguro, M.;Ootsubo, T.;Ueno, M.;AKARI SOSOS team, AKARI SOSOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • We constructed an unbiased asteroid catalog from the mid-infrared part of the All-Sky Survey with the Infrared Camera (IRC) on board AKARI. About 20% of the point source events recorded in the IRC All-Sky Survey observations were not used for the IRC Point Source Catalog in its production process because of a lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, are included in these "residual events" We identified asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculated the size and albedo based on the Standard Thermal Model. Finally we had a new brand of asteroid catalog, which contains 5,120 objects, about twice as many as the IRAS asteroid catalog.