• Title/Summary/Keyword: assistive device utility evaluation

Search Result 2, Processing Time 0.016 seconds

Evaluation of the Clinical Usefulness of an Assistive Device Fabricated by 3D Printing in an Oblique X-ray Examination of the Lumbar Vertebrae (허리뼈 사방향 X-선 검사에서 3D 프린팅으로 제작된 보조기구의 임상적 유용성 평가)

  • Kim, Hyeong-Gyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.505-512
    • /
    • 2022
  • In this study, a 3D printed assistive device was applied to X-ray examinations to diagnose human diseases. Based on the results of evaluating the device, statistical and regression analyses were conducted to evaluate its clinical utility and purchase intention, respectively. In the experiment, 90 radiologists performed X-ray examinations on patients who agreed with the use of the assistive device in oblique view X-rays of the lumbar spine, and then statistical analyses were undertaken with a traditional aid and factor analysis. The non-standardized coefficient values of the multiple regression analysis performed by setting the purchase intention of the 3D printed device as the dependent variable and the 3D printed device and traditional aid calculated by factor analysis as independent variables were 0.893 (p<0.001) and 0.269 (p<0.001), indicating statistically significant results. The results show that the 3D printed assistive device proposed in this study has higher clinical utility than traditional aids used in oblique view X-rays of the lumbar spine.

Design Development Process for Clothing of Upper Limb Assistive Wearable Soft Robot (상지 보조 소프트로봇의 의복화를 위한 디자인 개발 프로세스)

  • Hong, Yuhwa;Park, Juyeon;Nam, Yun Ja;Park, Daegeun;Cho, Kyu-Jin;Kim, Youn Joo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • This study proposes a design process for an upper limb assistive wearable soft robot that will enable the development of a clothing product for an upper limb assistive soft robot. A soft robot made of a flexible and soft material that compensates for the shortcomings of existing upper limb muscle strength assistive devices is being developed. Consequently, a clothing process of the upper limb assistive soft robot is required to increase the possibility of wearing such a device. The design process of the upper limb auxiliary soft robot is presented as follows. User analysis and required performance deduction-Soft robot design-upper limb assistive wearable soft robot prototype design and production-evaluation. After designing the clothing according to the design process, the design was revised and supplemented repeatedly according to the results of the clothing evaluation. In the post-production evaluation stage, the first and second prototypes were attached to actual subjects, and the second prototype showed better results. The developed soft robot evaluated if the functionality as a clothing function and the functionality as the utility of the device were harmonized. The convergence study utilized a process of reducing friction conducted through an understanding and cooperation between research fields. The results of this study can be used as basic data to establish the direction of prototype development in fusion research.