• Title/Summary/Keyword: assimilable organic carbon (AOC)

Search Result 13, Processing Time 0.02 seconds

Formation of Assimilable Organic Carbon from Algogenic Organic Matter

  • Kim, Ji-Hoon;Chung, Soon-Hyung;Lee, Jing-Yeon;Kim, In-Hwan;Lee, Tae-Ho;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The objective of this study was to assess the variation in the concentration of assimilable organic carbon (AOC) in a drinking water resource, and investigate the characteristics of AOC derived from algae. The seasonal change in AOC at the Kamafusa dam corresponded to changes in the algal cell number. In order to understand the relationship between AOC and algae in a water resource and water purification plant, two kinds of laboratory experiment were performed. The algal culture experiment showed that extracellular organic matter (EOM) that was released during the growth of Phormidium tenue with M-11 medium led to significant increases in the AOC concentration, but no significant variation in the AOC concentration was observed with CT medium containing a high dissolved organic carbon concentration. The chlorination experiment showed that the AOC included in EOM was not easily removed by chlorination, although the AOC included in intercellular organic matter released from the algal cells by chlorination was removed under conditions where residual chlorine was detected.

Characterizations of Assimilable Organic Carbon, Biodegradable Dissolved Organic Carbon, and Bacterial Regrowth in Distribution Systems by Water Treatment (배수관망에서 수처리에 의한 AOC, BDOC및 세균성장의 특성)

  • Chang, Young-Cheol;Kweon Jung;Yoo, Young-Sik;Kang, Mi-Hye;Andrew A. Randall
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.42-52
    • /
    • 2002
  • Two full-scale distribution systems, one treating water by ozonation and another treating water by nanofiltration in parallel with lime softening, were monitored for bacterial growth. Both systems kept disinfectant residuals surf as chlorine and chloramine in their respective distribution systems. Bacterial growth was assessed by heterotrophic plate counts (HPC) on R2A agar. In the distribution systems fed by ozonated water, HPCs were correlated ($R^2$= 0.97) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation ($R^2$ = 0.75) with an exponential model based on AOC. No significant correlation was found between bacteria growth on R2A agar and BDOC concentrations. Therefore, in agreement with previous work, bacterial growth in the distribution systems was found to correlate with AOC concentrations.

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

FORMATION OF KETOACIDS AND AOC DURING OZONATION IN DRINKING WATER

  • Lee, Kyung-Hyuk
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.293-302
    • /
    • 2006
  • The reaction of ozone with NOM (Natural Organic Matter) can occur by two different pathways: that involving molecular ozone and by way of reactions with hydroxyl radicals which are produced from the decomposition of molecular ozone. As such, the formation of ketoacids and Assimilable Organic Carbon (AOC) can be controlled by controlling the pathway by which ozone reacts with NOM. The ratios of $[OH{\cdot}]/[O_3]$ ($R_{CT}$ values) were determined under the various ozonation conditions. The $R_{CT}$ values increased with increasing initial ozone concentration. The $R_{CT}$ values (ranges from 10 to $35^{\circ}C$) increased linearly as temperature increased (within the range from 10 to $35^{\circ}C$). However, $R_{CT}$ was independent of hydraulic retention time (HRT). Operational conditions were found to affect the formation of AOC. The conditions where the molecular ozone reaction predominated resulted in an increase in the formation of AOC.

The Utility of Measuring Assimiliable Organic Carbon (AOC) as an Indicator of Biostability in Distribution Systems for Finished Water

  • Chang, Young-Cheol;Toyama, Tadashi;Jung, Kweon;Kikuchi, Shitaro
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.539-542
    • /
    • 2006
  • The objective of this paper is to compare the applicability of assimilable organic carbon (AOC) or biodegradable dissolved organic carbon (BDOC) for quantifying biodegradable organic material (BOM) and bio-stability in distribution systems for a variety of finished waters. The study the data is derived from was part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different waters on distribution system water quality. Seven different finished waters were produced from surface, ground, or brackish water on site and fed 18 independent pilot distribution systems (PDSs), either as single finished water or as a blend of several finished waters. AOC and BDOC have often been used as indicators of bacterial regrowth potential in distribution systems. In this study, AOC was the more useful assay of the two for the BOM concentrations observed in the PDSs. BDOC did not distinguish BOM while AOC did at the low BOM levels from many of the advanced treatments (e.g. RO, $O^3/BAC$). AOC in contrast allowed much more meaningful calculations of the consumption or production of AOC as the blends passed through the PDSs even for very low BOM blends. In addition, meaningful trends corresponding to changes in heterophic plate count (HPC) were observed for AOC but not for BDOC. Moreover, AOC stability was associated with waters produced from advanced membrane treatment.

Biological stability in the ozone and peroxone pretreatment systems in river water (하천수 내 생물학적 안정성에 따른 유기물 특성변화와 오존산화기반 전처리 연구)

  • Park, Se-Hee;Noh, Jin-Hyung;Park, Ji-Won;Maeng, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • Climate change is believed to increase the amount of dissolved organic matter in surface water, as a result of the release of bulk organic matter, which make difficult to achieve a high quality of drinking water via conventional water treatment techniques. Therefore, the natural water treatment techniques, such as managed aquifer recharge (MAR), can be proposed as a alternative method to improve water quality greatly. Removal of bulk organic matter using managed aquifer recharge system is mainly achieved by biodegradation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) can be used as water quality indicators for biological stability of drinking water. In this study, we compared the change of BDOC and AOC with respect to pretreatment methods (i.e., ozone or peroxone). The oxidative pretreatment can transform the recalcitrant organic matter into readily biodegradable one (i.e., BDOC and AOC). We also investigated the differences of organic matter characteristics between BDOC and AOC. We observed the decreases in dissolved organic carbon (DOC) and the tryptophan-like fluorescence intensities. Liquid chromatographic - organic carbon detection (LC-OCD) analysis also showed the reduction of the low molecular weight (LMW) fraction (15% removed, less than 500 Da), which is known to be easily biodegradable, and the biopolymers, high molecular weight fractions (66%). Therefore, BDOC consists of a broad range of organic matter characteristics with respect to molecular weight. In AOC, low molecular weight organic matter and biopolymers fraction was reduced by 11 and 6%, respectively. It confirmed that biodegradation by microorganisms as the main removal mechanism in AOC, while BDOC has biodegradation by microorganism as well as the sorption effects from the sand. $O_3$ and $O_3+H_2O_2$ were compared with respect to biological stability and dissolved organic matter characteristics. BDOC and AOC were determined to be about 1.9 times for $O_3$ and about 1.4 times for $O_3+H_2O_2$. It was confirmed that $O_3$ enhanced the biodegradability by increasing LMW dissolved organic matter.

Biostability Characterization in a Full-scale Nanofiltration Water Treatment System (대규모 나노여과 정수처리 시스템에서의 생물학적 안정성에 관한 연구)

  • Hong, Seung-Kwan;Escobar, Isabel C.;Cho, Jae-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.158-162
    • /
    • 2005
  • The objective of this study was to assess the assimilable organic carbon (AOC) in processing water, a measurement of biostability, at several stages of a full-scale nanofiltration (NF) water treatment plant. The NF membrane plant investigated was a $45,400\;m^3$/day (12 mgd) water softening facility at Plantation City in southern Florida, which utilized an organic rich groundwater (dissolved organic carbon (DOC) = 17.6 mg/L) originated from a surficial aquifer. The average AOC concentration of raw feed water was estimated at 158 g/L acetate-C. After pretreatment(acid and antiscalant addition), AOC levels increased by 12.7%, suggesting that pretreatment chemicals used to control scaling may deteriorate feed water biostability. The results also demonstrated that nanofiltration was capable of effectively removing 63.4% of AOC and 94.8% of DOC from the raw water. AOC rejection in stage 1 (${\approx}\;68%$) was slightly higher than that of stage 2 (${\approx}\;58%$) indicating that AOC was removed less at the solution environment (i.e. low pH, high ionic strength and high hardness), which was often created in the $2^{nd}$ stage of full-scale membrane plants due to pretreatment (acid addition) and high recovery operation.

A Case Study of Characterization of AOC Formation

  • Kim, Ji-Hoon;Hwang, Hyeon-Uk;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2010
  • The variation of assimilable organic carbon(AOC) concentration at each condition of ozonation was investigated using a model water and drinking water resource. AOC concentration of model raw water and drinking water resource tended to increase at low ozone dose. The maximum AOC concentration was detected when the residual ozone begin to be measured. Also, the AOC concentration increase at pH 8 compared to both pH 6 and 7 while that for pH 9 decreased rapidly. The removal characteristics of trihalomethane formation potential(THMFP) by ozonation was also investigated. Unlike the trend of AOC, the THMFP concentration never increased by ozonation but decreased even at low ozone dosage. From these results, the ozone dosage would be effective to simultaneously decrease both AOC and THMFP.

Effect of Ozonation on Removal of Dissolved Organic Matter by Granular Activated Carbon Process (오존공정이 입상활성탄공정에서 용존유기물질의 제거에 미치는 영향)

  • Ahn, Hyo-Won;Chae, Seon-Ha;Wang, Chang-Keun;Lim, Jae-Lim
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.601-608
    • /
    • 2008
  • The objective of this study was to evaluate the effect of ozonation as pretreatment on the removal of dissolved or biodegradable organic matter(DOM or BOM), the variance of DOM fractionation, and microbial regrowth by pilot-scale granular activated carbon processes in which adsorption and biodegradability was proceeding due to long time operation. Regardless of point of ozonation applied, GAC processes with ozonation(i.e., Ozonation combined with GAC Filter-adsorber; Pre O$_3$ + F/A, Ozonation combined with GAC adsorber; Post O$_3$ + GAC) compared with GAC processes without ozonation(i.e., GAC Filter-adsorber; F/A, GAC adsorber; GAC) removed approximately 10 to 20% more of DOC, hydrophilic DOM(HPI), BDOC and AOC after long period of operation that biological activity was assumed to happen. Ozonation was not found to have a significant effect on the removal of DOC, but caused the decrease of AOC by approximately 20%. It was found that the fixed bacterial biomass on GAC media did not show a significant difference between the GAC with ozonation and GAC without ozonation as pre-treatment, whereas the HPC of column effluent was more biostable at Post O$_3$ + GAC compared with F/A or GAC.

Upgrading the Measurement Method of Biodegradable Dissolved Organic Carbon in Natural Water or Drinking Water (자연수 및 먹는 물 중의 생물학적 분해가능한 용존유기탄소의 측정방법 개선에 관한 연구)

  • 이윤진;윤재섭;박준석;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.34-41
    • /
    • 2001
  • It is well known that bioassay on the low organic matters in water have developed from the two methods. One is assimilable organic carbon(AOC) that makes use of the maximum growth biomass of the pure strains for the standard substrates, the other is biodegradable dissolved organic carbon(BDOC) that determines the fraction of dissolved organic carbon(DOC) available for microbial utilization. The purpose of this study was to upgrade the measurement method of BDOC in natural water or drinking water. BBOC was determined by means of the bacterial growth and the DOC decrease at the same time. The origin inoculums were used to the suspended bacteria from Han River water, The initial optimum biomass and incubation time for initial DOC were induced by variation of nutrient repression and inoculums. The time reached to minimum DOC was selected as incubation time. The initial optimum biomass for Han river water was about 1000~5000 CFU/mL, respectively. In a sufficient biomass, suitable incubation time was about 3~5 day. It was indirectly calculated BDOC on maximum growth rate by measuring growth yield of indigenous bacteria. But it was difficult to adapt growth yield coefficient because of irregular bacterial growth. The measured 3 day BDOC was close to BDOC calculated with our proposed experimental equation between DOC and BDOC. It shows that the quantification of BDOC with this experimental equation can be used indirectly.

  • PDF